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CHAPTER 1

Circuit Elements and Laws

1.1 Voltage

Energy is required for the movement of charge from one point to another. Let W Joules
of energy be required to move positive charge Q columbs from a point a to point b in a
circuit. We say that a voltage exists between the two points. The voltage V between two
points may be defined in terms of energy that would be required if a charge were
transferred from one point to the other. Thus, there can be a voltage between two points
even if no charge is actually moving from one to the other. Voltage between a and b is

given by

V= WQJ/C

Worked are (W) in Joules

Ch arg e (Q)in columbs

Hence Electric Potential (V) =

Current :

An electric current is the movement of electric charges along a definite path. In case of

a conductor the moving charges are electrons.

The unit of current is the ampere. The ampere is defined as that current which when

flowing in two infinitely long parallel conductors of negligible cross section, situated 1 meter
apart in Vacuum, produces between the conductors a force of 2 x 10”7 Newton per metre
length.

Power : Power is defined as the work done per unit time. If a field F newton acts for t seconds

through a distance d metres along a straight line, work done W = Fxd N.m. or J. The power P,

either generated or dissipated by the circuit element.

P=w =Fxd
t t
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Work .

Power can also be written as Power= = time

Ch
= Chworkarge X Timearge

= Voltage x Current P =V x [ watt.

Energy : Electric energy W is defined as the Power Consumed in a given time. Hence, if
current IA flows in an element over a time period t second, when a voltage V volts is applied

across it, the energy consumed is given by

W=Pxt=VxIxtlJor watt. second.

The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of

energy is kilowatt. hour (Kwh)

1.2 Resistance : According to Ohm's law potential difference (V) across the ends of a
conductor is proportional to the current (I) flowing through the conductor at a constant

temperature. Mathematically Ohm's law is expressed as

ValorV=RxI

Or R = — ] where R is the proportionality constant and is designated as the conductor

resistance and has the unit of Ohm (Q).

Conductance : Voltage is induced in a stationary conductor when placed in a varying

magnetic field. The induced voltage (e) is proportional to the time rate of change of

current, di/dt producing the magnetic field.

di
Therefore e a dt

Ore=L dtdl
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e and i are both function of time. The proportionality constant L is called inductance.

The Unit of inductance is Henery (H).

Capacitance : A capacitor is a Physical device, which when polarized by an electric field by

applying a suitable voltage across it, stores energy in the form of a charge separation.

The ability of the capacitor to store charge is measured in terms of capacitance.

Capacitence of a capacitor is defined as the charge stored per Volt applied.

1.3

1.4

q _ Coulomb

C= = Farad

\Y% Volt

Active and passive Branch :

A branch is said to be active when it contains one or more energy sources. A passive

branch does not contain an energy source.

Branch : A branch is an element of the network having only two terminals.

Bilateral and unilateral element :

A bilateral element conducts equally well in either direction. Resistors and inductors
are examples of bilateral elements. When the current voltage relations are different for
the two directions of current flow, the element is said to be unilateral. Diode is an

unilateral element.

Linear Elements : When the current and voltage relationship in an element can be

simulated by a linear equation either algebraic, differential or integral type, the element

1s said to be linear element.

Non Linear Elements : When the current and voltage relationship in an element can

not be simulated by a linear equation, the element is said to be non linear elements.

Kirchhoff's Voltage Law (KVL) :

The algebraic sum of Voltages (or voltage drops) in any closed path or loop is Zero.
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Application of KVL with series connected voltage source.
R

MW

Fig. 1.1

V1+V2—-IR1-IR2=0

=V1+V2 =I (R1+R2)
V

1+\/‘2
I= Ri+R»

Application of KVL while voltage sources are connected in opposite polarity.

R,

MW\

V‘—.J_—
§ R,

/\/\/\I

Fig. 1.2

R,

Vi—1IR1 - V2—-1IR2-1IR3=0
% V1-V2=1IR] +IR2 +IR3
% V1-V2=1(R1 +1IR2+1R3)
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Vi -V,
% 1= Ri+R; +R3

Kirchaoff's Current Law (KCL) :

The algebraic sum of currents meeting at a junction or mode is zero.

Fig. 1.3

Considering five conductors, carrying currents 11, I2, I3, I4 and Is meeting at a point O.

Assuming the incoming currents to be positive and outgoing currents negative.
h+(¢-)+B+(-14)+15=0
[1—I2+13-14+15=0
I1+13+15=Ix+14

Thus above Law can also be stated as the sum of currents flowing towards any junction
in an electric circuit is equal to the sum of the currents flowing away from that junction.

Voltage Division (Series Circuit)

Considering a voltage source (E) with resistors R1 and R2 in series across it.
R,

a

E + :D § .

Fig. 1.4
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_E
I= Ri+tR:
E.R;
Voltage drop across R1 =1. R1 = R;+R»
E.R;

Similarly voltage drop across R2 =1.R2 = Rj+R»

Current Division :

A parallel circuit acts as a current divider as the current divides in all branches in a

parallel circuit.

Fig. 1.5

Fig. shown the current I has been divided into I1 and 12 in two parallel branches with

resistances R1 and R2 while V is the voltage drop across R1 and Ra.

\Y \Y

Ihh=_ andlh=__
R R>

Let R = Total resistance of the circuit.

RiR»
% R= Ri+R>
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\4 \Y V(R + R»)
_ - KK —
I= R — 12 - R1R2
Ri+R»

But=V =1I1R1 =12R2

% ) RIR 2
R +R
1 2
)
Y[ = Li(R; +R:
R>
Therefore &
I1= Ri+R»

Similarly it can be derived that

IR,
o= Rj+R»
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CHAPTER 2

Magnetic Circuits :

Introduction : Magnetic flux lines always form closed loops. The closed path followed
by the flux lines is called a magnetic circuit. Thus, a magnetic circuit provides a path
for magnetic flux, just as an electric circuit provides a path for the flow of electric
current. In general, the term magnetic circuit applies to any closed path in space, but in
the analysis of electro-mechanical and electronic system this term is specifically used
for circuits containing a major portion of ferromagnetic materials. The study of
magnetic circuit concepts is essential in the design, analysis and application of
electromagnetic devices like transformers, rotating machines, electromagnetic relays

etc.

Magnetomotive Force (M.M.F) :

Flux is produced round any current — carrying coil. In order to produce the required
flux density, the coil should have the correct number of turns. The product of the current

and the number of turns is defined as the coil magneto motive force (m.m.f).

If I = Current through the coil (A)

N = Number of turns in the coil.

Magnetomotive force = Current x turns

SoMM.F=1XN

The unit of M.M.F. is ampere—turn (AT) but it is taken as Ampere(A) since N

has no dimensions.

Magnetic Field Intensity

Magnetic Field Intensity is defined as the magneto-motive force per unit length of the

magnetic flux path. Its symbol is H.

10
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Magnetomotive force
Magnetic field Intensity (H)y=

Mean length of the magnetic path

Y, H=I—:Z=LNZ " A/m

Where [ is the mean length of the magnetic circuit in meters. Magnetic field intensity is also
called magnetic field strength or magnetizing force.

Permeability :-

Every substance possesses a certain power of conducting magnetic lines of
force. For example, iron is better conductor for magnetic lines of force than air
(vaccum) . Permeability of a material (M) is its conducting power for magnetic

lines of force. It is the ratio of the flux density. (B) Produced in a material to the
: . B
magnetic filed strength (H)i.e. y= H /

Reluctance :

Reluctance (s) is akin to resistance (which limits the electric Current). Flux
in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a measure of
the opposition offered by a magnetic circuit to the setting up of the flux.

Reluctance is the ratio of magneto motive force to the flux. Thus

4
S = ()

Its unit is ampere turns per webber (or AT/wb)
Permeance:-
The reciprocal of reluctance is called the permeance (symbol A).
Permeance (A) =1/S  wb/AT
Turn T has no unit.

Hence permeance is expressed in wb/A or Henerys(H).

11
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Electric Field versus Magentic Field.

1)

2)

3)

4)

5)

6)

Y

2)

Similarities

Electric Field

Flow of Current (I)

Emf is the cause of

flow of current

Resistance offered
to the flow of
Current, is called

resistance (R)

Conductance

0=1()_
R

Current density is
amperes per square

meter.

Current (I) - EMI%{

1)

2)

3)

4)

S)

6)

Dissimilarities

Current actually flows

in an electric Circuit.

Energy is needed as

long as current flows

)

2)

Magnetic Field

Flow of flux (9)

MMT is the cause of

flow of flux

Resistance offered to
the flow of flux, is

called reluctance (S)
oy 1
Permitivity () = / S

Flux density is number
of lines per square

meter.

Flux (2) = MMF

S

Flux does not actually
flow in a magnetic

circuit.
Energy is initially
needed to create the

magnetic flux, but not

12
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to maintain it.

3) Conductance is 3) Permeability (or
constant and magnetic
independent of current conductance )
strength at a particular depends on the total
temperature. flux for a particular

temperature.
B.H. Curve :

Place a piece of an unmagnetised iron bar AB within the field of a solenoid
to magnetise it. The field H produced by the solenoid, is called magnetising field,
whose value can be altered (increased or decreased) by changing (increasing or
decreasing) the current through the solenoid. If we increase slowly the value of
magnetic field (H) from zero to maximum value, the value of flux density (B)
varies along 1 to 2 as shown in the figure and the magnetic materials (i.e iron bar)
finally attains the maximum value of flux density (Bm) at point 2 and thus

becomes magnetically saturated.

Fig. 2.1

Now if value of H is decreased slowly (by decreasing the current in the
solenoid) the corresponding value of flux density (B) does not decreases along 2-
1 but decreases some what less rapidly along 2 to 3. Consequently during the

reversal of magnetization, the value of B is not zero, but 1s '13' at H= 0. In other

13
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wards, during the period of removal of magnetization force (H), the iron bar is

not completely demagnetized.

In order to demagnetise the iron bar completely, we have to supply the
demagnetisastion force (H) in the opposite direction (i.e. by reserving the
direction of current in the solenoid). The value of B is reduced to zero at point 4,
when H="14'". This value of H required to clear off the residual magnetisation, is
known as coercive force i.e. the tenacity with which the material holds to its

magnetism.

If after obtaining zero value of magnetism, the value of H is made more
negative, the iron bar again reaches, finally a state of magnetic saturation at the
point 5, which represents negative saturation. Now if the value of H is increased
from negative saturation (= '45') to positive saturation ( ='12") a curve '5,6,7,2' is
obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle of

magnetisation and is known as hysteresis loop.

14
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NETWORK ANALYSIS
Different terms are defined below:

1. Circuit: A circuit is a closed conducting path through which an electric current either
flow or is intended flow

2. Network: A combination of various electric elements, connected in any manner.

Whatsoever, is called an electric network

3. Node: it is an equipotential point at which two or more circuit elements are joined.

4. Junction: it is that point of a network where three or more circuit elements are joined.
5. Branch: it is a part of a network which lies between junction points.

6. Loop: It is a closed path in a circuit in which no element or node is accounted more than

once.

7. Mesh: It is a loop that contains no other loop within it.

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of 1) circuit elements ii)

nodes iii) junction points iv) branches and v) meshes.

Rs

R4 Ré

R1 ?3 R3
R VAVAVAend VAVA

Vi R2 R7

K_/\/\/\/_H_/\/\/\/?M_| £

R3 Ro \%

15
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Solution: 1) no. of circuit elements = 12 (9 resistors + 3 voltage sources)
i1) no. of nodes =10 (a, b, ¢, d, e, f, g, h, k, p)
ii1) no. of junction points =3 (b, e, h)

iv) no. of branches = 5 (bcde, be, bh, befgh, bakh)

v) no. of meshes = 3 (abhk, bcde, beth)

3.2 MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding solutions
for a network. The suitability of either mesh or nodal analysis to a particular problem depends
mainly on the number of voltage sources or current sources .If a network has a large number
of voltage sources, it is useful to use mesh analysis; as this analysis requires that all the sources
in a circuit be voltage sources. Therefore, if there are any current sources in a circuit they are
to be converted into equivalent voltage sources,if, on the other hand, the network has more
current sources,nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits mesh analysis
is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface without
crossovers. A non-planar circuit cannot be drawn on a plane surface without a crossover.

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a
planar circuit which looks like a non-planar circuit. It has already been discussed that a loop is
a closed path. A mesh is defined as a loop which does not contain any other loops within it. To
apply mesh analysis, our first step is to check whether the circuit is planar or not and the second
is to select mesh currents. Finally, writing Kirchhoff's voltage law equations in terms of
unknowns and solving them leads to the final solution.

W W

=

(a) (b) (©)
Figure 3.2

Observation of the Fig.3.2 indicates that there are two loops abefa,and bcdeb in the
network .Let us assume loop currents I1 and I2with directions as indicated in the figure.

16
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Considering the loop abefa alone, we observe that current I is passing through R1, and (I1-

I2) is passing through R2. By applying Kirchhoff’s voltage law, we can write

Vs. =liR1+R2(11-12) (3.1)
R R3
1
b
Vs R2
R4
)
G !
f e d

Figure 3.3

Similarly, if we consider the second mesh bcdeb, the current 12 is passing through R3

and R4, and (I2 — I1) is passing through R2. By applying Kirchhoff’s voltage law around the
second mesh, we have

R2 (I2-11) + R3l2 +R412 =0 (3.2)

By rearranging the above equations,the corresponding mesh current equations are

I1 (R1+R2) - I2R2 =V,

-I1R2 +(R2tR3+R 4) 12=0 (3.3)

By solving the above equations, we can find the currents 11 and I2,If we observe

Fig.3.3, the circuit consists of five branches and four nodes, including the reference node.The
number of mesh currents is equal to the number of mesh equations.

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of

17




CNT, Semester 3", Diploma Engineering (Electrical & Electronics)

mesh current would be 5-(4-1)=2.

18
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In general we have B number of branches and N number of nodes including the
reference node than number of linearly independent mesh equations M=B-(N-1).

Example 3.2 Write the mesh —\/\V\
5Q 10Q

current equations in the circuit shown 0V T 2Q

S50v——

in fig 3.4 and determine the currents.

Figure 3.4

Solution: Assume two mesh currents in the direction as indicated in fig. 3.5. The mesh

current equations are

50
—\/\\
101 b 100
THao< Y (sov

Figure 3.5
5I +2(I1-I2) = 10
1012 +2(12-11) +50=0 (3.4)
We can rearrange the above equations as
711 -2I2 =10
-2I1+1212 = -50 (3.5)

By solving the above equations, we have 1= 0.25 A, and I2 =-4.125

19
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Here the current in the second mesh 12, is negative; that is the actual current 12 flows opposite

to the assumed direction of current in the circuit of fig .3.5.

Example 3.3 Determine the mesh current 1 in the circuit shown in fig.3.6.

—\a —\/ AV —

Figure 3.6

Solution: From the circuit, we can from the following three mesh equations

1001+5(11+12) +3(11-13) = 50
20> +5(I2+1) +1(I2+13) = 10
3(3-N) +1(Il3th) =-5
Rearranging the above equations we get
18I1+512-313=50
SIi+812 + I3=10
-311 + Ip+ 413=-5

According to the Cramer’s rule

(3.6)
(3.7)

(3.8)

(3.9)
(3.10)

(3.11)

20
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50 5 -3
10 8 1

= -5 1 4 _1175
18 5 -3 356
5 8 1
-3 1 4

Or I1= 3.3 A Similarly,

18 50 -3
5 10 1
L 3 -5 4 _=355
- _
18 5 -3 356
5 8 1
-3 1 4
Or 1=-0.997A
18 5 50
5 8 10
e 3 1 -5 _505
18 5 -3 336
5 8 1
-3 1 4
Or I3=1.47A

S01=3.3A, 12=-0.997A, I3=1.47A

(3.12)

(3.13)

3.3 MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be written

by inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7

The loop equation are [1R1+ R2(I1-I2) =V1 R1

R3

I3

A

\ Rs

Figure 3.7

21
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Ro( I2-I1)+I2R3=-V2 3.14
R4I3+R513=V> 3.15

Reordering the above equations, we have

(R1+R2)I1-R212=V1 3.16
RoI1+(R2+R3)[2=-V2 3.17
(R4+R5)[3=V2 3.18

The general mesh equations for three mesh resistive network can be written as

Riil1 £ R12I2 + R1313=Va 3.19
+ Roili+R22I2 + R23l3= Vb 3.20
+ R31li + R321+R3313= V¢ 3.21

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 3.21
respectively, the following observations can be taken into account.

1. The self-resistance in each mesh
2. The mutual resistances between all pairs of meshes and
3. The algebraic sum of the voltages in each mesh.

The self-resistance of loop 1, R11=R1+R2, is the sum of the resistances through which I
passes.

The mutual resistance of loop 1, R12= -R2, is the sum of the resistances common to loop

currents I1 and I2. If the directions of the currents passing through the common resistances are
the same, the mutual resistance will have a positive sign; and if the directions of the currents

passing through the common resistance are opposite then the mutual resistance will have a
negative sign.

Va=V1 is the voltage which drives the loop 1. Here the positive sign is used if
the direction of the currents is the same as the direction of the source. If the current
direction is opposite to the direction of the source, then the negative sign is used.

Similarly R22=R2+R3 and R33=R4+R5 are the self-resistances of loops 2 and 3
respectively. The mutual resistances R13=0, R21= -R2, R23=0, R31=0, R32=0 are the
sums of the resistances common to the mesh currents indicated in their subscripts.

Vb=-V2, V= V2 are the sum of the voltages driving their respective loops.

22
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Example 3.4 write the mesh equation for the circuit shown in fig. 3.8

— % 50
5
(N
C) 11 7\_/ +
10V > 4 I 40
6Q
<—
£ 20V
' \/ '

Figure 3.8

Solution : the general equation for three mesh equation are

Ri1l1 £ R12I2 £ R1313=Va (3.22)
+ R2ili+R2212 + R233=Vp (3.23)
(3.24)

*+ R31li £ R32[2+R331=V¢

Consider equation 3.22

R11=self resistance of loop 1=(1Q+ 3 Q +6 Q) =10 Q

R12= the mutual resistance common to loop 1 and loop 2 =-3 Q

Here the negative sign indicates that the currents are in opposite direction
. R13= the mutual resistance common to loop 1 & 3=-6 Q

Va=+10V, the voltage the driving the loop 1.

Here he positive sign indicates the loop current 11 is in the same direction as the

source element.

Therefore equation 3.22 can be written as

23
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10 I1- 3I2-6I3= 10 V (3.25)
Consider Eq. 3.23

R21= the mutual resistance common to loop 1 and loop 2 =-3 Q

R22= self resistance of loop 2=(3Q+ 2 Q +5 Q) =10 Q

R23=0, there is no common resistance between loop 2 and 3.
Vb =-5V, the voltage driving the loop 2.
Therefore Eq. 3.23 can be written as
=311 + 10I=-5V (3.26)
Consider Eq. 3.24
R31= the mutual resistance common to loop 1 and loop 3 =-6 Q
R32= the mutual resistance common to loop 3 and loop 2 =0
R33= self resistance of loop 3=(6Q+ 4 Q) =10 Q
V= the algebraic sum of the voltage driving loop 3
=(5 V:20V)=25 V (3.27)
Therefore, Eq3.24can be written as -611 + 10I3= 25V
-611-312-613= 10V
-3I1+10I2=-5V
-611+1013=25V

3.4 SUPERMESH ANALYSIS

Suppose any of the branches in the network has a current source, then it is slightly difficult to
apply mesh analysis straight forward because first we should assume an unknown voltage
across the current source, writing mesh equation as before, and then relate the source current
to the assigned mesh currents. This is generally a difficult approach. On way to overcome this
difficulty is by applying the supermesh technique. Here we have to choose the kind of
supermesh. A supermesh is constituted by two adjacent loops that have a common current
source. As an example, consider the network shown in the figure 3.9.

R2
< +— +—

Figure 3.9

24
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Here the current source I is in the common boundary for the two meshes 1 and 2. This current
source creates a supermesh, which is nothing but a combination of meshes 1 and 2.

Ril1 + R3(I2-13)=V
Or Ril1 +R3l2 - Ral3=V

Considering mesh 3, we have

R3(I3-12)+ R4l3=0

Finally the current I from current source is equal to the difference between two mesh currents
1e.

I1-I2=1

we have thus formed three mesh equations which we can solve for the three unknown
currents in the network.

Example 3.5. Determine the current in the 5Q resistor in the network given in Fig. 3.10

3 b Il L e
>
I 10 Q I2 5 20

50 v C)_* Ii & 3Q

Figure 3.10

Solution: - From the first mesh, i.e. abcda, we have

50 = 10(I1-I2) + 5(I1-13)

Or 1511-1017 -513 =50 (3.28)

From the second and third meshes. we can form a super mesh

10(1I2-11)+2I2 +13+5(13-11)=0

Or -1511+1212 +613 =0 (3.29)

25
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The current source is equal to the difference between II and III mesh currents
re. 2-I3=2A (3.30)
Solving 3.28.,3.29 and 3.30. we have
I1 =19.99A,1>=17.33 A, and I3 =15.33
A The current in the 5CQ resistor =I1 -13 =19.99

-15.33=4.66A

The current in the 5Q resistor is 4.66A.

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the
currents, I1, I2 and 13.

10V
- - U
I )
I I3
é 3Q 1Q
10
A <
<« «— 2Q
4—
I I
I
Figure 3.11

Solution ; In fig 3.11, the current source lies on the perimeter of the circuit, and the
first mesh is ignored. Kirchhoff's voltage law is applied only for second and third meshes .

From the second mesh, we have
3(I2-11)+2(I2-13)+10 =0

Or 311 +51-213 = -10 (3.31)

From the third mesh, we have

I3+2(I3-I2) =10

Or 21+313 =10 (3.32)

26
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From the first mesh, I1 =10A (3.33)
From the abovethree equations, we get

[1=10A, I> =7.27, I3 =8.18A

3.5 NODALANALYSIS

In the chapter I we discussed simple circuits containing only two nodes, including the reference
node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum node, then it
is possible to write N -1nodal equations by assuming N-1 node voltages. For example,al0 node circuit
requires nine unknown voltages and nine equations. Each node in a circuit can be assigned a number or
a letter. The node voltage is the voltage of a given node with respect to one particular node, called the
reference node, which we assume at zero potential. In the circuit shown in fig. 3.12, node 3 is assumed
as the Reference node. The voltage at node 1 is the voltage at that node with respect to node 3. Similarly,
the voltage at node 2 is the voltage at that node with respect to node 3. Applying Kirchhoff’s current
law at node 1, the current entering is the current leaving (See Fig.3.13)

2
R4
.l
I ( R3 Rs
Figure 3.12
R2
2
Ii
®

Figure 3.13

I1= V1/R1 + (V1-V2)/R2

27
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Where V1 and V2 are the voltages at node 1 and 2, respectively. Similarly, at node

2.the current entering is equal to the current leaving as shown in fig. 3.14

R2 R4
SAVAVAVAS =

E % Figure 3.14

(V2-V1)/R2 + V2/R3 + V2/(R4+R5) =0

Rearranging the above equations, we have
V1[1/R1+1/R2]-V2(1/R2)=11

-V1(1/R2) + V2[1/R2+1/R3+1/(R4+R5)]=0

From the above equations we can find the voltages at each node.

Example 3.7 Determine the voltages at each node for the circuit shown in fig 3.15

3Q

10Q

VWV

_/\/\/\/\_.
, S

S5A 1£2>)> 6%

3

10V 7 50

[

\J
— WV

5

)

| | Figure 3.15

Solution : At node 1, assuming that all currents are leaving, we have
(V1-10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0
Or Vi[l/10+1/3+1/5+1/3]-V2[1/3+1/3]=1
0.96V1-0.66V2 =1 (3.36)
At node 2, assuming that all currents are leaving except the current from current source, we

have
(V2-V1)/3+ (V2-V1)/3+ (V2-V3)/2 =5
SVI[2/3]+V2[1/3 +1/3 + 1/2]-V3(1/2) =5

0.66V1+1.16V2-0.5V3= 5 (3.37)
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At node 3 assuming all currents are leaving, we
have (V3-V2)/2 + V3/1 + V3/6 =0
-0.5V2 + 1.66V3=0

Applying Cramer’s rule we get

1 -066 0
5 1.16 -0.5
0 -05 1.66 7.154
Vi= = =8.06
096 -0.66 0 0.887
-066 1.16 -0.5
0 -0.5 1.66
Similarly,
0.96 1 0
-0.66 5 -05
Ve 0 0 1.66 - 9.06 =102
0.96 -0.66 0 0.887
- 0.66 1.16 -0.5
0 -05 1.66
096 -0.66 1
-0.66 1.16 5
V3= 0 -05 0 _ 273 _ 307
096 -0.66 0 0.887
-0.66 1.16 -0.5
0 -0.5 1.66

(3.38)

3.6 NODAL EQUATIONS BY INSPECTION METHOD The nodal equations for a general planar network can also be written by inspection
without going through the detailed steps. Consider a three node resistive network, including the reference node, as shown in fig 3.16

R1 R3

Rs

Figure 3.16
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In fig. 3.16 the points a and b are the actual nodes and c is the reference node.

Now consider the nodes a and b separately as shown in fig 3.17(a) and (b)

(a) (b)
— Figure 3.17 —

In fig 3.17 (a), according to Kirchhoff’s current law we have

[1+12+13=0

(Va-V1)/R1 +Va/R2+ (Va-Vb)/R3=0 (3.39)

In fig 3.17 (b) , if we apply Kirchhoff’s current law

I4+15=13

.(Vb-Va)/R3 + Vb/Ra+(Vb-V2)/R5=0 (3.40)

Rearranging the above equations we get
(I/R1+1/R2+1/R3)Va-(1/R3)Vb=(1/R1)V1 (3.41)

(-1/R3)Va+ (1/R3+1/R4+1/R5)Vb=V2/R5 (3.42)

In general, the above equation can be written as

GaaVa + Gab V=11 (3.43)

GbaVa + GbbVb=I2 (3.44)

By comparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node
a, Gaa=(1/R1 + 1/R2 + 1/R3) is the sum of the conductances connected to node a. Similarly,
Gbb = (1/R3 + 1/R4 +1/R5) is the sum of the conductances connected to node b. Gab=(- 1/R3)
is the sum of the mutual conductances connected to node a and node ». Here all the mutual
conductances have negative signs. Similarly, Gba= (-1/R3) is also a mutual conductance
connected between nodes b and a. I1 and 12 are the sum of the source currents at node a and

node b, respectively. The current which drives into the node has positive sign, while the current
that drives away from the node has negative sign.
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Example 3.8 for the circuit shown in the figure 3.18 write the node equations by the

inspection method.

a
1 Q
10V 2Q
Fig 3.18

Solution:-

The general equations are

GaaVatGabVb=li (3.45)
GbaVa + GbbVb=I2 (3.46)

Consider equation 3.45

Gaa=(1+ 1/2 +1/3) mho. The self conductance at node a is the sum of the
conductances connected to node a.

Gbb = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of
conductances connected to node b.

Gab =-(1/3) mho, the mutual conductances between nodes a and b is the sum of the
conductances connected between node a and b.

Similarly Gpa = -(1/3), the sum of the mutual conductances between nodes b and

a. 11=10/1 =10 A, the source current at node a,
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[2=(2/5 + 5/6) = 1.23A, the source current at node b.

Therefore, the nodal equations are
1.83Va-0.33Vp=10 (3.47)

-0.33Va+0.7Vb= 1.23 (3.48)
3.7 SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source, then it is slightly difficult to
apply nodal analysis. One way to overcome this difficulty is to apply the supernode technique.
In this method, the two adjacent nodes that are connected by a voltage source are reduced to a
single node and then the equations are formed by applying Kirchhoff’s current law as usual.
This is explained with the help of fig. 3.19

Vi1 V2 'Y V3
—\\NN——
R> Vx
I QD R1 R3 R4 Rs
— VY
il
FIG 3.19

It is clear from the fig.3.19, that node 4 is the reference node. Applying Kirchhoff’s

current law at node 1, we get
I=(V1/R1) + (Vi1-V2)/R2

Due to the presence of voltage source Vy in between nodes 2 and 3 , it is slightly difficult

to find out the current. The supernode technique can be conveniently applied in this case.

Accordingly, we can write the combined equation for nodes 2 and 3 as under.
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(V2-V1)/R2 + V2/R3 + (V3-Vy)/R4 +V3/R5=0

The other equation is
V2-V3 =Vx

From the above three equations, we can find the three unknown voltages.

Example 3.9 Determine the current in the 5 Q resistor for the circuit shown in fig.
3.20

2Q

5Q 2Q

10V fig. 3.20
Solution. At node 1
10=V1/3 + (V1-V2)/2
Or V1[1/3 +1/2]-(V2/2)-10=0
0.83V1-0.5V2-10=0 (3.49)
At node 2 and 3, the supernode equation is
(V2-V1)/2 +V2/1 +(V3-10)/5 +V3/2=0
Or V12 +V2o[(1/2)+1]+ V3[1/5 + 1/2]=2
Or -0.5Vi1+1.5V2+0.7V3-2=0 (2.50)
The voltage between nodes 2 and 3 is given by
V2-V3=20 (3.51)
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The current in 5Q resistor [5 =(V3-10)/5

Solving equation 3.49, 3.50 and 3.51, we obtain
V3=-842V

Currents I5=(-8.42-10)/5 =-3.68 A (current towards node 3 ) i.e the

current flows towards node 3.

3.8 SOURCE TRANSFORMATION TECHNIQUE

In solving networks to find solutions one may have to deal with energy sources. It has
already been discussed in chapter 1 that basically, energy sources are either voltage sources or
current sources. Sometimes it is necessary to convert a voltage source to a current source or
vice-versa. Any practical voltage source consists of an ideal voltage source in series with an
internal resistance. Similarly, a practical current source consists of an ideal current source in

parallel with an internal resistance as shown in figure3.21. Ry and Rj represent the internal
resistances of the voltage source Vs, and current source Is respectively.

Rv

b fig.3.21 b

Any source, be it a current source or a voltage source, drives current through its load
resistance, and the magnitude of the current depends on the value of the load resistance. Fig
3.22 represents a practical voltage source and a practical current source connected to the same

load resistance R1..

Rv
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Vs I A A A ARus ® R RL

A

(a) (b)

Figure 3.22
From fig 3.22 (a) the load voltage can be calculated by using Kirchhoff’s voltage law as
Vab=Vs-ILRy
The open circuit voltage Voc=Vs

The short circuit current Ise=  °

Ry
from fig 3.22 (b)
IL=Is-I=Is-(Vab/R1)
The open circuit voltage Voc= IsR1

The short circuit current Isc=Is

The above two sources are said to be equal, if they produce equal amounts of current
and voltage when they are connected to identical load resistances. Therefore, by equating the

open circuit votages and short circuit currents of the above two sources we obtain

Voc=IsR1=V5

Isc=Is=Vs/Ry
It follows that
Ri1=Rv=Rs; Vs=IRs

where Rs is the internal resistance of the voltage or current source. Therefore, any
practical voltage source, having an ideal voltage Vs and internal series resistance Rs can be

replaced by a current source Is=Vs/Rs in parallel with an internal resistance Rs. The reverse
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tansformation is also possible. Thus, a practical current source in parallel with an internal

resistance Rs can be replaced by a voltage source Vs=IsRs in series with an internal resistance

Rs.

Example 3.10 Determine the equivalent voltage source for the current source shown in fig
3.23

5A 5Q

Figure 3.23

Solution: The voltage across terminals A and B is equal to 25 V. since the internal resistance
for the current source is 5 €, the internal resistance of the voltage source is also 5 Q. The

equivalent voltage source is shown in fig. 3.24.

5Q

Fig 3.24

Example 3.11 Determine the equivalent current source for the voltage source shown in fig. 3.25

%

30 Q
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Solution : the short circuit current at terminals A and B is equal to

[=50/30=1.66 A

1.66 A

@ :
300 >

Fig 3.26

Since the internal resistance for the voltage source is 30€2, the internal resistance

of the current source is also 30 Q. The equivalent current source is shown in fig. 3.26.
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NETWORK THEOREMS

Before start the theorem we should know the basic terms of the network.
Circuit: It is the combination of electrical elements through which current
passes is called circuit.
Network: It is the combination of circuits and elements is called network.
Unilateral :It is the circuit whose parameter and characteristics change with
change in the direction of the supply application.
Bilateral: It is the circuit whose parameter and characteristics do not
change with the supply in either side of the network.
Node: It is the inter connection point of two or more than two elements is
called node.
Branch: It is the interconnection point of three or more than three elements is
called branch.
Loop: It is a complete closed path in a circuit and no element or node is taken
more than once.
Super-Position Theorem :
Statement :" It states that in a network of linear resistances containing more than
one source the current which flows at any point is the sum of all the currents
which would flow at that point if each source were considered separately and all

other sources replaced for time being leaving its internal resistances if any".
R, R-

MWNW——WW

Explanation :

Considering E1 source
R

Step 1.
Ro&r are in series and parallel with R3 and again series with R
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(R2+12) || R3
R +r )R
=(2 2)3 =m(say)
Ry+r +R3
Rti=m+R1+r1
E
I =L
Rty
11%XR3
Iy =m+n+m
I= 12 2
Ry+m+R;s
Step — 2
Considering E2 source,R1&r? are series and R3 parallel and R» in series

(R1+r1) || R3
= Ri+r)Rs =5 (say) R,

t I R2
+r +
R] I"l R3 W‘ \/ 1,
Ro=n+Ry+nr I
B

] 2 f R;

2= Rn

13/=121 (Ritr)
Ri+rn+R3

a DXR3

- Ri+rn+R3

Step —3

Current in R branch =1, - 1/

Current in R branch=7-1'
2 2 2

I

The direction of the branch current will be in the direction of the greater value
current.
Thevenin’s Theorem :

The current flowing through the load resistance R connected across any two

terminals A and B of a linear active bilateral network is given by
% Z

th oc

Ri+RL Ri+Rs
Where Vinh = Vo 1s the open. circuit voltage across A and B terminal when Rp is
removed.

I =

Rj =Rt is the internal resistances of the network as viewed back into the open
circuit network from terminals A & B with all sources replaced by their internal
resistances if any.
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Explanation :

| SO R: Rt

Step — 1 for finding V.

Remove Rr temporarily to find Voc.
R,

WW
E—— [
il o R l}c
__ £
I= R+R +r
1 2
Voc = IR2

Step — 2 finding R¢h
Remove all the sources leaving their internal resistances if any and viewed from

open circuit side to find out Rj or Rin.

Ry

Ri=(R1+r)| Rz
(R + R
Ri=_1 2

Ri+r+R>

Step — 3

Connect internal resistances and Thevenin’s voltage in series with load

resistance Rp..
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Where Rip=thevenin resistance

Vih=thevenin voltage
Ith=thevenin current
Ri = (Rl; r) || Rz

th oc
I =F+R =
th L Ri+RL

Example 01- Applying thevenin theorem find the following from given figure

(i)  the Current in the load resistance Rp, of 15 Q

k19 A
5:#\ﬁr -
:: pl -
312 2150
24V “——
r= 16
.
B

Solution : (i) Finding Voc
— Remove 15Q resistance and find the Voltage across A and B

3Q
AAAA A

wyy

24v L
r=1Q [

AAAA
vyvy
—
[39]

Voc 1s the voltage across 12 Q resister

Voo 212 =
12+3+1

(11)  Finding Rn

Rih 1s calculated from the terminal A & B into the network.

The 1 Q resister and 3 Q in are series and then parallel 56

AAAA
vy

AAAA
vy
—
[
AAAA
vy
—
[3®]
Q

Rin=3+1//12

_4 ><12=3Q
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(iii) Ip== 2 -—18 _j A,
Rrp +R  15+3

Example 02: Determine the current in 1€ resistor across AB of the

network shown in fig(a) using thevenin theorem. Solution:The circuirt can

- o fig (a),(b),(c),(d) respectively
Step-1 remove the 1€ resistor and keeping open circuit . The current source is
converted to the equivalent voltage source as shown in fig (¢)
Step-02 for finding the Vinh we'll apply KVL law in fig (c)
then 3-(3+2)x-1=0
x=0.4A
Vin=VAB =3-3*0.4=1.8V
Step03-for finding the R¢n,all sources are set be zero
Rth=2//3=(2*3)/(2+3)=1.2Q
Step04- Then current I1h=1.8/(12.1+1)=0.82A
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Example03: The four arms of a wheatstone bridge have the following resistances

AB=100Q,BC=10Q,CD=4Q,DA=50Q.AA galvanometer of 20Q
resistance is connected across BD. Use thevenin theorem to compute the current
through the galvanometer when the potential differencel 0V is maintained across
AC.

Solution:
a
T
o - R
N 5&"( ,-ll & 2
~ =
| 22 | s¥a)
st 3.
‘ \,/ |
‘ >
'| N —‘\
| 3 p——
C
e B 1
1 Ny -?‘lL § \1'1,‘5»* o
\6’7“ “ ‘a'f - '3( % F“.;;-{ " ® &
B, -
P vl 2 \
A s N ',__ | \"1.% pé -
73 T | "“’ \ Na 7
ity | S anl | AT '.\S‘u A

step 01- Galvanometer is removed.

step02-finding the Vi between B&D.ABC is a potential divider on which a
voltage drop of 10vtakes place.

Potential of B w.r.t

C=10*10/110=0.909V Potential of D

w.r.t C=10%4/54=.741V then,

p.d between B&D is Vih=0.909-

.741=0.168V Step03-finding Rn
remove all sources to zero keeping their internal resistances.
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Rth =RBD=10//100+50//4=12.79Q
Step04;
lastly Ith=Vin/Rih+R1.=0.168/(12.79+20)=5mA

Norton's Theorem

Statement : In any two terminal active network containing voltage sources and
resistances when viewed from its output terminals in equivalent to a constant
current source and a parallel resistance. The constant current source is equal to
the current which would flow in a short circuit placed across the terminals and
parallel resistance is the resistance of the network when viewed from the open
circuit side after replacing their internal resistances and removing all the sources.

OR
In any two terminal active network the current flowing through the load resistance

Ry 1s given by
]= [sc 3 Rz L

Ri X Rp

Where R;j is the internal resistance of the network as viewed from the open ckt
side A & B with all sources being replaced by leaving their internal resistances if
any.

Isc 1s the short ckt current between the two terminals of the load resistance

when it is shorted

Explanation :
R

AW A

E e

B

Step — 1
A &B are shorted by a thick copper wire to find out Isc
Isc =E/(R1 + l")
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Isc
R, Y

B
Isc =E/(R1 +1)
Step — 2
Remove all the source leaving its internal resistance if any and viewed from
open circuit side A and B into the network to find R; .

*B

Ri=R1+7r)| R
Ri=(R1+7rR2/(Ri+r+R2)

e (1) §Ri ‘gm

Step — 3

Connect Isc & Rj in parallel with RL
] = I X—RL

R+ Ry
Example 01:Using norton's theorem find the current that would flow through the
resistor Ry whenit takes the values of 12Q,24Q&36Q respectively in the fig

shown below.
Solution:
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Step 01-remove the load resistance by making short circuit. now terminal AB
short circuited.

Step 02-Finding the short circuit current Isc
First the current due to E1 1s =120/40=3A,and due to E2 1s 180/60=3A.
then Ic=3+3=6A
Step 03-finding resistance RN
It is calculated by by open circuit the load resistance and viewed from open
circuit and into the network and all sources are taken zero.
RN=40//60=(40%60)/(40+60)=24€
1) when Rp=12Q, I =6*24/(24+36)=4A
i1) when Rp =24Q,11 =6/2=3A
111) when R1.=36Q,11 =6%24/(24+36)=2.4A

Maximum PowerTransfer Theorem

Statement : A resistive load will abstract maximum power from a network when
the load resistance is equal to the resistance of the network as viewed from the
output terminals(Open circuit) with all sources removed leaving their internal
resistances if any

Proof : A
V v IL
I = th
L Ri + RL R1
Power delivered to the load % R
resistance is given by S5t
P=PR "
L L 'th
Vth 2 L B
= R+R R
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= Vm’RL
(Ri + R )?
Power delivered to the load resistance Ry, will be maximum
When dP _ 0
dR;
d_ Tk _,
dR (R +R )
L i L
= Vz (R +R )?‘ VZRW X2(R *R ) =0
(R+R )
i L

= V> (Ri + RL Y* =V RL X 2(Ri + RL) =0
= Vin? (Ri + R > = 2Va® RL(Ri + RL) =0
= Vin® (Ri + Re )* =2Va® R (Ri + RL)

= R+ R =2R;,

=R =2R; - Ry

= Ri=RL
Vi
(P)max= (R *+R)? %
V2 i L
=— = R
4R 5,
2L
=V xR
4R%T

MILLIMAN’S THEOREM :

According to Millimans Theorem number of sources can be converted into
a single source with a internal resistance connected in series to it,if the sources
are in parallel connection.

According to the Milliman’s theorem the equivalent voltage source
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=EtGr+EGr+E3G3+
.. G1+G2 +G3 +...
L s T
R R R
= 1 2 3
G1 +G2 +G3 +....
=h+b+h+ Gr—
+G2 +G3 +...
Example — Calculate the current across 5Q resistor by using Milliman’s Thm.

Only

A
20 R, R
R, EE 50 0 EE R:
. <D ‘P
Ri= 30
E 6v E: 12v
I B

Solution :- Given ,
R1=2Q, R2=6Q , R3=4Q, Ri=5Q

Ei= 6v, Ex=12v
the resistance R is not calculated because there is no voltage source
E K
Lt 2 tE
R R 7
Vo=E= 1 1 1
RR "R
1 2 3
6 12
_2 0T
[
2 6 4
34043 6

; 1.09Q 2 Y'
R=__1 =1 =12 =1092 s [
o111 11 3

R+ R+R 12 T
1 2 3 SQ

Voc 6.54 Nei_ 7
L=T00+5 10945 07Amp. j EE—

COMPENSATION THEOREM :

Statement :
It’s states that in a circuit any resistance ‘R” in a branch of network in

which a current ‘I’ 1s flowing can be replaced. For the purposes of calculations
by a voltage source = - IR

OR
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If the resistance of any branch of network is changed from R to R +4R
where the current flowing originaly is 1. The change current at any other place in
the network may be calculated by assuming that one e.m.f — I A R has been
injected into the modified branch. While all other sources have their e.m.f.
suppressed and ‘R’ represented by their internal resistances only.

Ri=5 iy 2.5A i3 -2.5A
= 75 R,-200 R3 =20Q
Exp — (01)

Calculate the values of new currents in the network illustrated , when the resistor

R3 is increased by 30%.
Solution :- In the given circuit , the values of various branch currents are
L =75/(5+10) = 54

X i

I =1 =5 20 =2.5A4Amp . /‘5‘, .

3 2 40 ~ <"'f\/ ‘b i_:
Now the value of R3, when it increase 30% 3 i 3 If.:
R3 =20 + (20%0.3) = 26Q R 260

1
IR=26-20=6Q - g
=BV
V = -IAR i
=-2.5%6 i: RI .
=-15V -<-MMZA = 13 =2Amp
511200 = 57"+ 2090 = 1005 = sa Ln; £
F20Q T 269
0OnB'=4 15+z6 = 1—530 =0.54mp —.:-;5\.
AN
=0.5%5 = -:I_-_' 15v

I U

. —ZT O.IAmp

=0.5%20 =

[!

1 75 0.44mp

1"=5-0.4=4.64Amp
L"=0.1+2.5=2.6Amp
;"=25-0.5=24mp
RECIPROCITY THEOREM :
Statement :
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It states that in any bilateral network, if a source of e.m.f ‘E’ in any branch
produces a current ‘I’ any other branch. Then the same e.m.f ‘E’ acting in the

second branch would produce the same current ‘I’ in the 15 branch.

Step — 1 First ammeter B reads the current in this branch due to the 36v source,
the current is given by

4. x12
4112=—16 ~=3Q
36
I="9=44mp s 10
4x12 48 T -
Jg=——— =—= T 12Q
BT 0341 16 AP
Ip =current through 1 Q resister 40 B
Step — (II) Then interchanging the sources
and measuring the current
6x 12 72 :
6Q12Q=6 "+ 12= 18 =4Q 20 30
R =4+3+1=8Q
s 1Q
a 2 120

36V

36 4.5x%12 ) Vo 36
=—=454mp. 4 = = = - === )
1 g mp, 14 PP 3A4Amp Transfer resistance 73 12Q
COUPLED CIRCUITS

It is defined as the interconnected loops of an electric network through
the magnetic circuit.
There are two types of induced emf.
(1)  Statically Induced emf.
(2)  Dynamically Induced emf.
Faraday’s Laws of Electro-Magnetic :
Introduction — First Law :—
Whenever the magnetic flux linked with a circuit changes, an emf is induced in

it.
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OR
Whenever a conductor cuts magnetic flux an emf is induced in it.
Second Law :—
It states that the magnitude of induced emf is equal to the rate of change of flux
linkages.

OR
The emf induced is directly proportional to the rate of change of flux and
number of turns

Mathematically :
e oc 20
dt
e oc N
__yv 9
Or e N i
Where e = induced emf
N = No. of turns
@ = flux

‘- ve’ sign is due to Lenz’s Law
Inductance :—

It is defined as the property of the substance which opposes any change in

Current & flux.
Unit :—  Henry
Fleming’s Right Hand Rule: —

It states that “hold your right hand with fore-finger, middle finger and
thumb at right angles to each other. If the fore-finger represents the direction of
field, thumb represents the direction of motion of the conductor, then the middle
finger represents the direction of induced emf.”

Lenz’s Law : —

It states that electromagnetically induced current always flows in such a
direction that the action of magnetic field set up by it tends to oppose the vary
cause which produces it.

OR

It states that the direction of the induced current (emf) is such that it
opposes the change of magnetic flux.
(2) Dynamically Induced emf :—
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o7 >
i

In this case the field is stationary and the conductors are rotating in an

uniform magnetic field at flux density ‘B” Wb/mt? and the conductor is lying
perpendicular to the magnetic field. Let ‘I’ is the length of the conductor and it
moves a distance of ‘dx’ nt in time ‘dt’ second.

The area swept by the conductor = 1.
dx Hence the flux cut = ldx. B

Bldx

Change in flux in time ‘dt’ second = — (¢
E = Bly

Where V' = @dt

If the conductor is making an angle ‘0’ with the magnetic field, then
e = Blv sinf
(1) Statically Induced emf : —

Here the conductors are remain in stationary and flux linked with it
changes by increasing or decreasing.

It is divided into two types .
(1)  Self-induced emf.
(1)  Mutually-induced emf.
(i) Self-induced emf : — It is defined as the emf induced in a coil due to the

changeL of its own flux linked with the coil.

(00000

v
—&-

If current through the coil is changed then the flux linked with its own

turn will also change which will produce an emf is called self-induced emf.

Self-Inductance :—
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It is defined as the property of the coil due to which it opposes any

change (increase or decrease) of current or flux through it.

Co-efficient of Self-Inductance (L) :—
It is defined as the ratio of weber turns per ampere of current in the coil.
OR
It is the ratio of flux linked per ampere of current in the coil
1st Method for ‘L’ :—

- N

Where L = Co-efficient of self-induction
N = Number of turns
¢ = flux
I = Current

2nd Method for L :—
We know that
LN
=LI=Ng
= -LI=-N¢
5o oy 9
jt
-N _‘P

4
PR
1

dl
dt
Where L = Inductance

eL=-— —ddt(p 1s known as self-induced emf.

When d_ldt =lamp/ sec.

e=1 volt
L =1 Henry
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A coil is said to be a self-inductance of 1 Henry if 1 volt is induced in it.
When the current through it changes at the rate of 1 amp/ sec.
3rd Method for L : —

Where A = Area of x-section of the coil

N = Number of turns

L = Length of the coil
(i) Mutually Induced emf :—

It is defined as the emf induced in one coil due to change in current in
other coil. Consider two coils ‘A’ and ‘B’ lying close to each other. An emf will
be induced in coil ‘B’ due to change of current in coil ‘A’ by changing the position

of the rheostat.
{\_'% é::

Mutual Inductance :—

It is defined as the emf induced in coil ‘B’ due to change of current in
coil ‘A’ is the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A”’.
Co-efficient of Mutual Inductance (M)

Coefficient of mutual inductance between the two coils is defined as the
weber-turns in one coil due to one ampere current in the other.
1st Method for ‘M’ : —

="

Al

N2 = Number of turns

M = Mutual Inductance

@1 = flux linkage

I[1 = Current in ampere
2nd Method for M :—
We know that

m="%
I

= Ml = N>
= -Ml = N2
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dt

Where ey =-M idtgol is known as mutually induced emf.

ey = —1lvolt
Then M = 1 Henry

A coil is said to be a mutual inductance of 1 Henry when 1 volt is
induced when the current of 1 amp/sec. is changed in its neighbouring coil.
3rd Method for M :—

M = M M ANN

!

Co-efficient of Coupling :

Consider two magnetically coupled coils having N1 and N2 turns
respectively. Their individual co-efficient of self-inductances are
L MoM AN
1 = l
Mo M AN 2%
=l—
The flux @1 produced in coil ‘A’ due to a current of I} ampere is
(p_L{l MM AN?XI

B\ / N
o= M M ANT

L

1

1 [
Suppose a fraction of this flux i.e. K1@1 is linked with coil ‘B’

Then M = Mxsz KwiNe . (1)
[1 l/MoMrA
Similarly the flux roduced in coil ‘B’ due to I amp. Is
}:MM AN(P12p U 2 amp

= 1 r 2 2
2 /
Suppose a fraction of this flux i.e. K2@2 is linked with coil ‘A’
K KN N
Then M= B2 xyi= 2 2\ s (2)
yp) I/IMoM,A
Multiplying equation (1) & (2)
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KK NN,
2=————— x N
12/ MM 2 A

2 2

2 moMoan Mo M, ANy

=K I I

| [Qk; =k, = K]
M?=K*L.L
1 2
2
P M2,
LL

1 2

M.
=>K=1/L.L
1 2

Where ‘K’ is known as the co-efficient of coupling.
Co-efficient of coupling is defined as the ratio of mutual inductance

between two coils to the square root of their self- inductances.

Inductances In Series (Additive) :—

Fluxes are in the same durection

Let M = Co-efficient of mutual inductance
L = Co-efficient of self-inductance of first coil.
L» = Co-efficient of self-inductance of second coil.
EMF induced in first coil due to self-inductance
er =—L 7#

Mutually induced emf in first coil

e dar
i==M gy
EMF induced in second coil due to self induction
dl

eL, =—-Ly dt

Mutually induced emf in second coil

eM> =_Md_1dt

Total induced emf
e=e + e + e + e

L1 L2 M1 M2

If ‘L’ is the equivalent inductance, then
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-L d_]dt =-1 iIa’t —Md_]dt - L d_]dt -Md_]dt
= —Liﬂa’t == d]dt (L1 —L2—-2M)
>L=L1+L,+2M

Inductances In Series (Substnactive) :—

1{ 1 |;>| .‘

(Fluxes are opposite in direction)

4

Let M = Co-efficient of mutual inductance
L1 = Co-efficient of self-inductance of first coil

L -= Co-efficient of self-inductance of second
coil Emf induced in first coil due to self induction,

dl
et =-L1 — dt
Mutually induced emf in first coil
e dl dl
M = == M— = M—
dt dt
Emf induced in second coil due to self-induction
dl
er, =-L» — dt
Mutually induced emf in second coil
e dl dl
My === M— =M—
dt dt

Total induced emf
e=e +e +e + e

L1 L2 M M2
dl dl dl dl dl
= -1dl=- dl( +[ -2Mm) SL=L +L -2M
dt dt 1 2 1 2

Inductances In Parallel :—
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L

’ i '
1

Let two inductances of L; & L, are connected in parallel

Let the co-efficent of mutual inductance between them is M.
=i+
Al =dir 1 dix (1)
dt dt dt

e=L4 + pdn
| dt dt

=L2ildt2 M d

I
drt
L M e e F e

Dt o =20y P = (10 - ) g

= dit = (L2 =M) dip (2)
dt (Ll—M)dt
dl = di 4 diy
dt dt dt
=(L2 -M) dip + dir
(L]—M)d_t dr

dl

o —— = — +1

1
If ‘L’ is the equivalent inductance
di dil di?
= — = — + —_
esbar Tt M
Ldi =L di +Mdi
dt . dt dt
T N — )
dt L dt dt
dit
Substituting the value of dr
di 1. Lo=M ., . (5)

dt L LM dt
Equating equation (3) & (5)
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S M L ewg
Lo—-M 1 Lo—-M
> L-M +1=LL L-M + M
1 1
Lr—-M+L—M =_1 . LM +LIM-M ?
Li-M L Li—-M

S L+l —2M =1 Lily -M?
LML L—M

L+ -2 = [ [L122 -]
LL -M?
= L= L+ -2
1 2
When mutual field assist.
LL Z—M2
L =W

When mutual field opposes.
CONDUCTIVELY COUPLED EQUIVALENT CIRCUITS

=  The Lo%}) equatlon are from fig(a)

Vi=L1— + M
dt dt
di di
Vo= 2 + M
dt dt

= The loop equation are from fig(b)

=L -M) ﬂdtl""_M dtd(il +i2)
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Vo= (L2 -M)_dldl“2 +M dtd (i1 +1i2)

Which, on mmyllﬁcauon become
i

Vi=Li_+ M _>
dt dctldz +
1
Vo=L, M —
dt dt

So called conductively equivalent of the magnetic circuit . Here we may
represent ZA = L1-M .
ZB=(L2-M) and Zc =
In case M is + ve and both the currents then ZAo =L1-M , Zg =L2-M and Z¢ =
M, also , if is — ve and currents in the common branch opposite to each other
ZA=1L1+tM,Zg=LrtM and Zc = - M.
Similarly, if M is —ve but the two currents in the common branch are additive,
then also.
Za=L1tM, Zs=1.+tM and Zc = - M.
Further ZA , ZB and Zc may also be assumed to be the T equivalent of the
circuit.

Exp. -01:
Two coupled cols have self inductances L1= 10% 10H and Lo=20x107H.

The coefficient of coupling (K) being 0.75 in the air, find voltage in the second coil
and the flux of first coil provided the second coils has 500 turns and the circuit

current is given by i1 = 2sin 314.1A.
Solution :
M=K \|[1L>

M= 0.75\/10><10‘3 x

20%1073 = M =10.6x107> H

The voltage induced in second coil is
di di

Vo=M " dft =M df

_ g d

=10.6 X107t (2 sin 3147)

=10.6 x1073 x 2 x 314 cos 314¢.
The ma%netlc CKt belng)hnear
M —

L
11

0=_M _ x;=106xX107 ) 314
500 K 1t 500 %0.75
=5.66 x10™ sin 314t
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@1 =5.66 X107 sin s 314¢.

Exp. 02
Find the total inductance of the three series connected coupled

coils.Where the self and mutual inductances are L1=1H,L,=2H,L3=5H

Mi12=0.5H, M3 =1H, M13=1H
Solution:
La =LitM2tM13
=1+20.5+1
=2.5H

=2+1+0.5
=3.5H

= 5+1+1
= 7H

=2.5+3.5+7
= 13H (Ans)
Example 03:

Two identical 750 turn coils A and B lie in parallel planes. A current
changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate
the mutual inductance of the arrangement .If the self inductance of each coil is
15mH, calculate the flux produced in coil A per ampere and the percentage of
this flux which links the turns of B.

Solution: We know that
Mdl,
dt

€y =

now,
Mo _ B 5.2 _5.,10"3Wb/A
1 I E N 750
M 7.5+107°
;= = = = G
k JLL 157 102 0.5=50%

61




CNT, Semester 3", Diploma Engineering (Electrical & Electronics)

A.C FUNDAMENTAL
Direct Current Alternating Current
A% v
i N N
T N i N
{— t —
(1) D.C. always flow in one (D[A.C. 1s one which reverse
direction and whose magnitude periodically in

remains constant. . (T )
direction and whose magnitude

undergoes a definite cycle changes
in definite intervals of time.

(2) High cost of production, (2)| Low cost of production

(3) (3)| By using transformer A.C. voltage

It is not possible by D.C. .
: can be decreased or increased.
Because D.C. is dangerous to the

transformer. A.C. can be transmitted to a long

4 4)| distance economically.
) Its transmission cost is too high. @ Y

Definition of A.C. terms :-
Cyecle : It is one complete set of +ve and —ve values of alternating quality spread
over 360° or 2[] radan.
Time Period : It is defined as the time required to complete one cycle.
Frequency : It is defined as the reciprocal of time period. i.e. f=1/T
Or
It is defined as the number of cycles completed per second.
Amplitude : It is defined as the maximum value of either +ve half cycle or —ve
half cycle.
Phase : It is defined as the angular displacement between two haves is zero.
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OR
Two alternating quant}ty are in phase v
when each pass through their zero value at I

the same instant and also attain their VT
maximum value at the same instant in a
given cycle. i t—

V= "Vnsin wt

1 =1y sin wt

Phase Difference :- It is defined as the angular displacement between two
alternating quantities.
OR
If the angular displacement between two waves are not zero, then that is

known as phase difference. i.e. at a particular time they attain unequal distance.

v

I\

OR

Two quantities are out of phase if they reach their maximum value or
minimum value at different times but always have an equal phase angle between
them.

Here V' = Vi, sin wt

i = I sin (wt-Q)

In this case current lags voltage by an angle ‘@’.

Phasor Diagram :
Generation of Alternating emf :-

Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt? is
placed in x-axis in an uniform magnetic field of maximum flux density Bm
web/nt’. The coil is rotating in the magnetic field with a velocity of w radian /
second. At time t = 0, the coil is in x-axis. After interval of time ‘dt’ second the
coil make rotating in anti-clockwise direction and makes an angle ‘6’ with x-
direction. The perpendicular component of the magnetic field is ¢ = @n cos wt

According to Faraday’s Laws of electro-magnetic Induction
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e= -N—ddtgo

=-N4 (¢ coswr)
dat
= =N (=¢@m w cos wt)
= Nw@pu sin wt
= 2IfN@m sin wt(Qw = 217f)
= 21fNBm Asin wt
e = Ey sin wt
Where Em = 2TfNBm A
f —frequency in Hz
Bm— Maximum flux density in
Wb/mt® Now when 6 or wt = 90°
e=Em
1.e. Em=2mTINBmA

Fae N2 Wt
6 >

Root Mean Square (R.M.S) Value :—

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which
when flowing through a given circuit for a given time produces same heat as
produced by the alternating current when flowing through the same circuit for the

same time.
Sinuscdial alternating current is

i:ImSinWtZImSine

The mean of squares of the instantaneous values of current over one

complete cycle
=2["_2.d6
0 (2 —0)
The square root of this value is

o

A o 2m

= [y sin 6)2 do

\ 02"
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79 \2770

\/1 ) 2,71 - cos 26
_de

\/1’" 2_[" (1 -cos26 )d6
41

2
I 9 -sin 20 27
4T

2 277 sin 41T

\/1
do
41 0 2

In??fr (2m-0)

41T
_\Fu_
2

1
Lrms = Tmz =0.707 In

Average Value :—

The average value of an alternating current is expressed by that steady
current (d.c.) which transfers across any circuit the same charge as it transferred
by that alternating current during the sae time.

The equation of the qltedrélating current is i = Iy sin ©
©\ [ i.
o (T =0)
1 .Sin 9 1 :
a0 = m I” sin 6. dO

’ 1
=]_m [— cosB ]Tro =7 [— COSIT — (COSOO]
T T
/
0 [1-0¢-1)]

2 1
lov=""T1T

= 2X Maximum Current

av]l
Hence, 1,, = 0.6371,,
The average value over a complete cycle is zero
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Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of
maximum value to r.m.s value.

MaximumValue _ Inm
Ka = = =/2=1414
a R.M SValue z, J

§

Form factor : - It is defined as the ratio of r.m.s value to average value.
Kf= rm.s.Value _0.7071n =/2 =1.414
Average.Value  0.6371n
Kf=111

Phasor or Vector Representation of Alternating Quantity : —
0

An alternating current or voltage, (quantity) in a vector quantity which has
magnitude as well as direction. Let the alternating value of current be represented

by the equation e = Eyy Sin wt. The projection of Em on Y-axis at any instant gives
the instantaneous value of alternating current. Since the instantaneous values are
continuously changing, so they are represented by a rotating vector or phasor. A
phasor is a vector rotating at a constant angular velocity

At #, e1 = Ep sin wiy

Att,er = E, sin wh

Addition of two alternating Current : —
Letey = E, sin wt

e2 = Em, sin(wt — @) E
The sum of two sine waves of the same frequency g
1s another sine wave of same frequency but of a ®
different maximum value and Phase. ‘ E >

e= J\; e1? + ex? + 2e1e cos@
Phasor Algebra :—
A vector quantity can be expressed in terms of
(1)  Rectangular or Cartesian form
(i1))  Trigonometric form
(i11) Exponential form
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(iv) Polar form

Esin g

E=a+jb

= E(cosB +j sin 0)
Where a = E cos 0 is the active part
b = E sin 6 is the reactive part

Ecose

0=tan"_ = Phase angle
a
= x—1(90%)
72 =-1(180°)
©==j(270%)

13
74=1(360°)

f&. N

(i) Rectangular for :-
E=aztjb
tan@=5b/a

(i) Trigonometric form :-
E = E(cosf £ sin 0)

(iii) Exponential form :-
E = Eet/®

(iv) Polar form :-
E=E/*eE=d" +b?)

Addition or Subtration :-

Ey =ay +jb
Ey =ay +jb;
Ei1xE, = + +(b+b
12 Ex = (a1 ag)+(bl 2
tan! 1 2
® =

Multiplication : -
Ey1 x Ey = (a1 +ja1) £ (a1 +jby)
=(a1a2 = b1b2 ) +j(arax + b1by)
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+
ab ba
@ = tan-1 A2 r2
aia, — b1by
Ei=E 146
E,=E,/6)

E1 xEx=E(Ex Z@i +@2
Division :-

Ei=E 146
E,=E, /86
E "EZ0 _E

o= = /6010 -6
Ex E2/6 E

A.C. through Pure Resistance : —

Let the resistance of R ohm is connected across to A.C supply of applied
voltage

é I
—_—3 v
"""‘""T
J\i
s
_ e = Emsin Wt or v = Vpsin wt
e = Em SIN Wf ==========mmmmmmmeme o (1)
Let ‘I’ 1s the instantaneous current .
Here e = iR
=i=¢e/R
i = EmSin Wt / R-----===-==mmmmmemme - (2)

By comparing equation (1) and equation (2) we get alternating voltage
and current in a pure resistive circuit are in phase
Instantaneous power is given by
P=ei
= Em sin wt . Iy sin
wt = B I sin” wt
E 1

=_m _m 2sin2 wt
2

e = Emsin wt
[ = Imsin wt

= %mfl”ﬂ (1= cos 2wr) T t—>

P= E%% —%’):m.‘/_[ﬁz.cos2wt

iLe. P= V”’TI’K V’{T I@.COS 2wt
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Vo I,_.
Where fz \./—mz is called constant part of power.

%271 =2 .cos 2wt 1s called fluctuating part of power.

The fluctuating part Vm ]m .cos2wt of frequency double that of voltage and current 2

waves.
volsy g
Hence power for the whole cycleis P="/5.7, m m

= P = VI watts

A.C through Pure Inductance : —
Let inductance of ‘L’ henry is connected across the A.C. supply

v = Vmsin wt

T A (1)
According to Faraday’s laws of electromagnetic inductance the emf induced

across the inductance

r=1 a

v = Vmsin wt

di . .
dt  is the rate of change of current Ldy gl R1T)

di
Vsinwt=L ~—

x dt NS

—m—p >

dt L

>di = JLL’" sin wt.dt
Integrating both sides,
V
i=JL" sinwtdt
Jai= P sinwed

V  coswt

L w
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_V coswt

1 = m

wL

v
- cos wt
wL

V 7

i=- zsin wt — —_
wL 2
V T
=-—= sinwt ——2 [QX, =2mfL = wL]

Maximum value of 7 is

m="_ when gw-T is unity.

X1 2
Hence the equation of current becomes i = 1, sin(wt — 1/ 2)
So we find that if applied voltage is rep[resented by v = ¥, sin wt , then current
flowing in a purely inductive circuit is given by
i = Iy sin(wt — 1/ 2)

i

Here current lags voltage by an angle 11/2 Radian. A

Power factor =Cos @
=co0s 90°

=0 G

Power Consumed = VI cos @ v
= VIx0
=0

Hence, the power consumed by a purely Inductive circuit is zero.

A.C. Through Pure Capacitance : —

C i = I sn{wt—xl2)
L v = Vmsin wt
1|
1 S
- —ri—y T2
v = Vmsin wt

Let a capacitance of ‘C” farad is connected across the A.C. supply of applied
voltage

V= Vin SIN WE =mmmmmmmmm e e (1)
Let ‘g’ =change on plates when p.d. between two plates of capacitor is ‘v’
qg=cv

q = cVm sin wt
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ith =c dtd (V sin wt)

i =cVysin wt
= wcVm cos wt

v
= = cos wt
1/ we
V . ..
= w =cos wt [ x =_1 =_1 isknown as capacitive reactance
Xc Q . we  2T11fc
in ohm. ]
= Im cos wt

= Im sin(wt + 1T/ 2)

Here current leads the supply voltage by an angle 11/2 radian.

Power factor =cos @
=co0s 90° =0

Power Consumed = VI cos @
=VIx0 =0

The power consumed by a pure capacitive circuit is zero.
A.C. Through R-L Series Circuit : —

L
: (00000 __
W
¢ Vr S VL —>
L d
N/
e=E_sn wt

The resistance of R-ohm and inductance of L-henry are connected in series
across the A.C. supply of applied voltage
e=Epsinwt (1)
V=Vr+jVL
2 2 - ﬁ
R

= /"r +V Z@=tan'

- X,
AURY +(IX1) Lp=tan' —
R
; X
[R%+XL Zp=tan' —L
R

_ X Vi=IXL
vV =1zZo=tan' L

R
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Where Z= #2+X, ,

=R +;X 1 1s known as impedance of R-L series Circuit.
__V _Em sin wt
ZLg B ZL¢
I = Iy sin(wt — @)

Here current lags the supply voltage by an angle ¢.
Power Factor :— It is the cosine of the angle between the voltage and current.

OR

It is the ratio of active power to apparent power.
OR

It is the ratio of resistance to inpedence .

Power :—

=i

=V sin wt.Iy, sin(wt — @)

=V Im sin wt.sin(wt — @)

1
=72 Vi Ly 2sin we.sin(wt — @)

= lz Vin In[cosg — cos 2(wt —@)]

Obviously the power consists of two parts.

: 1 . .
(1)  aconstant part =2 V,, I, cos which contributes to real power.

. : 1 : :
(1)  apulsating component —2 V,, I, cos(2wt — @) which has a frequency twice

that of the voltage and current. It does not contribute to actual power since its
average value over a complete cycle is zero.
Hence average power consumed

1
=72 Vi I, cos@

= %271”’2 cosQ
=VI cos@
Where V & 1 represents the r.m.s value.
A.C. Through R-C Series Circuit : —
The resistance of ‘R’-ohm and capacitance of ‘C’ farad is connected across the

A.C. supply of applied voltage
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(1)

V=Vr+(=jVc)
= IR+ (—jIX ¢)
=I(R-jX¢)

V=IZ

Where Z=R - jXc = R* + Xc ? is known as impedance of R-C series Circuit.
Z=R-jXc

=\VR? + X2

z-@=tan ! i I
R
A%
V=I1ZL-¢
V

=1=22-9 NS

= E; sin wt

ZL -

= ZE Z" sin(wt + @)

> I = Iy sin(wt + @)

Here current leads the supply voltage by an angle ‘@’.

A.C. Through R-L-C Series Circuit : —

Let a resistance of ‘R’-ohm inductance of ‘L’ henry and a capacitance of ‘C’

farad are connected across the A.C. supply in series of applied voltage

L

MC
< 3

L e— e ——

e = Epm SIN Wt ===mmmmmmmmmmm e (1)
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e=Vr+tVi+Vc
=Vr+jVL —jVc
=VR+j(VL—Vc)
=Ir+jIXL-IXC)
=SNR+j(XL-Xc)]

GX X
=IVR +(X - Xe))  <t@=tan "L “c
R

=1ZZLxp

Where J _ ' .
Z=1"R*+ (X[ -Xc)* is known as the impedance of R-L-C Series

Circuit.
If

i Xr>Xe, then the angle is +ve.

X1 <X, then the angle is -ve.

Impedance is defined as the phasor sum of resistance and net reactance

e=1Z/L%¢
oz =g g LS Gt
S 72 PAEY T u, Tinsin(vito)

(1) Ifx;>Xc,then P.fwill be lagging.
(2) Ifxp<Xc,then, P.fwill be leading.
(3) Ifx.=Xc, then, the circuit will be resistive one. The p.f. becomes unity
and the resonance occurs.

REASONANCE
It is defined as the resonance in electrical circuit having passive or active
elements represents a particular state when the current and the voltage in the
circuit is maximum and minimum with respect to the magnitude of excitation
at a particular frequency and the impedances being either minimum or
maximum at unity power factor

Resonance are classified into two types.

(1) Series Resonance

(2) Parallel Resonance

(1) Series Resonance :- Let a resistance of ‘R’ ohm, inductance of ‘L’ henry
and capacitance of ‘C’ farad are connected in series across A.C. supply
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w—] 00000 __,

——

=/

e=FE_sn wt
e = Em sin wt

The impedance of the circuit
Z=R+j(X1-XC)]

Z=\R? +(X; -Xc)’

The condition of series resonance:
The resonance will occur when the reactive part of the line current is
zero The p.f. becomes unity.
The net reactance will be zero.
The current becomes maximum.
At resonance net reactance is zero
Xi—Xc =0
=X1=Xc

=W L= _1
o —W C

=>W,2LC=1

=W, 2 :_ECI

Resonant frequency (f, ) = *Tl ﬁ(}l

Impedance at Resonance
Z0=R
Current at Resonance

I, = ZR
Power factor at resonance
p.f.=£ =R = [QZo=R]
Zo R
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Resonance Curve :-

Unity p.f(upf) L

Lagging
P.f

fo

At low frequency the X¢ is greater and the circuit behaves leading and

at high frequency the X1, becomes high and the circuit behaves lagging
circuit.
If the resistance will be low the curve will be stiff (peak).
» If the resistance will go oh increasing the current goes on decreasing and
the curve become flat.
Band Width :—
At point ‘A’ the power loss is I°R.
The frequency is fo which 1s at
resonance. I i
2
The power loss is 50% of the power loss at point

A

‘A”/ IO

Hence the frequencies
corresponding to point ‘B’ is known as half power frequencies f7 &
f2. f1 = Lower half power frequency
R
f=r-
1 0 4L

F> =Upper haklf power frequency
f=Er+
2 o 4mL
Band width (B.W.) is defined as the difference between upper half power
frequency ad lower half power frequency.
BW.=f-f= "
2 1 21L
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Selectivity : —
Selectivity is defined as the ratio of Band width to resonant frequency
Selectivity = BW. =R Selectivity = _R
fo 21L 21fo L
Quality Factor (Q-factor) :—
It is defined as the ratio of 21T X Maximum energy stored to energy dissipated

per cycle

amx L2

2
Q-factor =""T7ZRT

_ITL!\ﬂ !2
O I2RT
_mL2l?
CI2RT
_mL2I?
12RT
=21L.
RT
Quality factor == AM' Q=L = f
R I 0

Quality factor is defined as the reciprocal of power factor.

Q factor = = Wsl'(p

It is the reciprocal of selectivity.
= Voltage across Inductor.

Voltage across resistor

Q-factor Or Magnification factor

= 0 L
IoR

_X

=_ L

R
2nf L _ WL
= 0 = o

RR

Q-faCtOf factor = Voltage across Capacotor.
Voltage across resistor
_1x

IoR
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Xc
= R

1 1
= 2mfo C =2mfo CR

1

Q-factor =W CRrR

2=MWolx 1
¢ R CR
0
1
2 - —
Q R*C
1
0=\RC
-1 /L
0 R\ C

Graphical Method :—
(1) Resistance 1s independent of frequency It represents a straight line.
(2) Inductive Reactance Xp = 21T{L

It is directly proportional to frequency. As the frequency increases , XL
increases

1
(3) Capacitive Reactance Xc = =27/C

XL

f ——y

It is inversely proportional to frequency. As the frequency increases, X ¢
decreases.

When frequency increases, X1, increases and Xc decreases from
the higher value.
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fo

=00

w
-Xc

At a certain frequency. XL = X
That particular frequency is known as Resonant frequency.
Variation of circuit parameter in series resonance:
(2) Parallel Resonance :- Resonance will occur when the reactive part of the
line current is zero.

> il
F I C
2 —
ok
At resonance,
Ic—ILsin=0
Ic =11 sin®
= XV = v sin @
2
c R+X,
= Xc =\/R2+XL2 X\/R2+XL2 ILcos ¢
1 X ILsin g ¢
= X¢ =R*+X; , IL

= R? + X2 = X;. Xc

1
= 7% == X1 Xc =WoLx W—€-

0
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ZZ:Cé
SR>+ X, >= C'L o

>R +(Q2mfy Ly = &=

R +4m2fo2[2= CL_

fo = Resonant frequency in parallel circuit.
Current at Resonance = I cos@
V R

\/RZ + X2 '\/RZ X2
_ VR
=,

R*+X;

VR
="/

=VR=VLIC—
L/RC

Dynamic Impedence
L/ RC — Dynamic Impedance of the circuit.
or, dynamic impedances is defined as the impedance at resonance frequency in
parallel circuit.
Parallel Circuit :—

2 o

=
L

The parallel resonance condition:
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When the reactive part of the line current is zero.

The net reactance is zero.

The line current will be minimum.
The power factor will be unity
Impedance 7, =R +/X,
=Ry, —jXc
11
z 1 Rl +]XL
(Ri+jX1)
= (Rl+.iX DR —JX )
Ri+jX |
= R+X 2
1 L
R XL
R,+X, JR,+X ,
1 L 1 L
1.1
z 2 R1 +']XC
(R2+jX )
=(R2 —JX )(sziX )
R +jX
= 2 L

Admittance 1 =

Y1=

S

Admittance

RS2 + X2
R’ . Xc
“"R.+X, JRZ+x ,
2 C 2 C
Total Admittance Admittance 1_ =i +L

Z VARYY)

Y,

=>Y =Y+
N X1 R2 Xc
>Y=R°+X ,=jR*“+X ,+R°+X ,+j R°+X ,
1 L 1 L 2 2

P X C C
1 R2 L Xc

K2 T Rz 7 Kz 7 K2
1 +XL 2 +XC 1 +XL 2+XC

At Resonance,

X
L Xc¢

R+X ,-R,+X , =

L 2 C

Xp c

Rt+X =R +X
1 L 2 C

==
2

= )(L(Rz2 + X8)= XC(R12 + XLZ)

Somir, 7t 212 -1 (R12+4172f2L2)
am f C 2mfC
R* 2mf?
= 2MmfLR '+ _ R AL

. 2mfC, 2mfC C
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L R>  m? >
> 2mfC-2mfC= C -2mfR,
1 L 2 L 2
> —-R =2nfL— - R
2mfc ¢ C
L -R? 2
C L-CR
S 4m2f2LC= == 1
L > L[-CRy>
C R
1 L-CR ,
41 f'z e — —'2
IC L-CR,
1 L-CR ,
:/»2= 1
2 2
4 LC L-CRy
1 L-CR ,

=>f=

/ 2
2m Y LC L-CR>»

1 L-CRi
>f= 2mry\ L’C-LC’R,
2
f1s called Resonant frequency.
IfR* =0
Thens= 1 |L=CR
1

1

L_CR 2
=2mL \ C

=1 L-pg:
2L\ C 1
1 R?
_217 LZC L
1 [L R,
1= o LC 12
If R; and Rz = 0, then
-1 L
s 2V L>C

pe Ll
2mVLC  2mi/LC

Comparison of Series and Parallel Resonant Circuit : —

Item Series ckt (R-L-C)

Parallel ckt (R— L and
0
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™ Impedance at Resonance Minimum

Maximum

p
™ Current at Resonance —

Maximum= R

7

Minimum= (L / CR)

™ Effective Impedance R L
CR
™ P f. at Resonance Unity Unity
M Resonant Frequency 1 11 R
T
2 LC oar LC - L
™ [t Magnifies Voltage Current
™ Magnification factor %L %

Parallel circuit :—

I1 Ri m—m
+1 i: Ra- IC _.

=,
P

v.f

. [
Z1 =Ry +]XL=I\R12+XL24§01

Zy=Ri-jXc =\NR2*+Xc? Z -¢

1,=—V_ =V Z-¢=I L-¢
VAVAVII
=R21
Z1
Here Y1 — Admittance of the circuit

Admittance is defined as the reciprocal of impedence.

Where
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I =T7Y = v

! R+ jX1L

[,=— V=V Zo=vvZe=ILy,
L -1 I»

I = )”12 + 12+ 2111 cos(@1 +¢2 )
I=5LZ -1 +]24(P2

A T‘SJ'“ Q,_

The resultant current “I” is the vector sum of the branch currents 11 & I

can be found by using parallelogram low of vectors or resolving I2 into their X
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—and Y- components ( or active and reactive components respectively) and then
by combining these components.

Sum of active components of I1 and I = 11 cos @1+ I2 cos @2 Sum

of the reactive components of [ and [ 2 =1 sin ¢2 -1 1 sin @1

EXP-01:
A 60Hz voltage of 230 V effective value is impressed on an inductance of
0.265 H
(1)  Write the time equation for the voltage and the resulting current. Let the
zero axis of the voltage wave be at t = 0.

(1)  Show the voltage and current on a phasor diagram.
(i11) Find the maximum energy stored in the inductance.
Solution :-

Vinax = A2V =A2 x 230V

f=60Hz, w=2nf=2mx60=377rad/s.
xi =wl =377 x0.265 = 100Q

(i)  The time equation for voltage is ¥ () = 2302 sin 377

Imax = Vmax / x1 = 236\2 /100. = 25\3

@ =90° (lag).
Q Currente quation is.
i(f) = 2.3y2sin(377¢t — 1/ 2)
or =2.3+2 cos377¢
(1) It

1 1
(ili)  OF Emax = ~2 LI *aw = =2 % 0.265 >f(2.3« 22 =1.4J

Example -02 :

The potential difference measured across a coil is 4.5 v, when it carries a
direct current of 9 A. The same coil when carries an alternating current of 9A at
25 Hz, the potential difference is 24 v. Find the power and the power factor when
it is supplied by 50 v, 50 Hz supply.

Solution :
Let R be the d.c. resistance and L be inductance of the coil.
R=V/I=4.5/9 =0.5Q
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With a.c. current of 25Hz, z = V/1.

24
=70 =2.66Q
x1 =1Z2-R?2 F+2.66%-0.5>
=2.620
x] =21 X 25% [,
x; =0.0167Q)

At 50Hz
x1 =2.62% 2 =524Q
Z =10.5% +524?
=5.06 Q
[=50/5.26=9.5A
P =1%R =9.5 x 0.5 =45 watt.
Example — 03 :
A 50- pf capacitor is connected across a 230-v, 50 — Hz supply. Calculate
(a)  The reactance offered by the capacitor.
(b) The maximum current and
(c)  The r.m.s value of the current drawn by the capacitor.
Solution :

1 1 1
(@ w=—="—""-= — = 63.60Q
we 2mfe  2m x50 x50 x10

(c)  Since 230 v represents the r.m.s value
Q17 ms =230/x; =230/63.6=3.624

(b) Iy =lonsxA2=3.62%/x2=5114
Example — 04 :

In a particular R — L series circuit a voltage of 10v at 50 Hz produces a
current of 700 mA. What are the values of R and L in the circuit ?
Solution :

(1)  Z= R+ Qmx50L)
N S R
= VR? + 98696L°
V =1z
10 = 700 x1073/(R? + 9869612 )
V(R + 9869612 ) = 10 /700 x1073 = 100/ 7
R? + 98696L* =10000/ 49-------m-mm-mmem- (D)
(1i1)  In the second case Z = \/Rz + (21 x 75L)

Q10 = 500 x1073\/R? + 222066L% ) = 20
JR? +222066L% ) = 20
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R2 + 222066L2 = 400 =-mnmmmmemmemmemmemmeee (1)
Subtracting Ea.(I) from (i), we get,

222066L% = 986961 = 400 — (10000 / 49)

= 123370L% = 196

o2 70196

[ 196
= L =1V 123370=0.0398H4 =40 mH.

Substituting this value of L in equation (i1) we get R: + 222066L2 (0.398). = 400
= R=6.99Q.

Example — 04 :

A 20Q resistor is connected in series with an inductor, a capacitor and an
ammeter across a 25 —v, variable frequency supply. When the frequency is
400Hz, the current is at its Max'" value of 0.5 A and the potential difference
across the capacitor is 150v. Calculate
(a) The capacitance of the capacitor.

(b) The resistance and inductance of the inductor.
Solution :

Since current is maximum, the circuit 1s in resonance.

xi =Vc/1=150/0.5=300Q
(@)  x1 =1/2mfe = 300 = 1/ 21T x 400% ¢

= ¢ =1.325 %1070 = 1.325uf .

(b)  x =x; =150/0.5=300Q

21 x 400 x L =300

=L =0.49H
(c) Atresonance,

Circuit resistance = 20+R

= V/Z=2510.5
= R=30Q
Exp.-05

An R-L-C series circuits consists of a resistance of 1000Q, an inductance
of 100MH an a capacitance of wu df or 10PK
(1i1)  The half power points.
Solution :

. 1 10°
D fo=ondi0 10+ = ap = 199KHE
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I\F 1 [10'1
11) Q= RVYC =1000 %\ 10-u =100
R

1000
i)  fi=fo = g7 = 159 x103 - = 158.2KH>
R 159 x1073 + 0 159.8KH.
= - = X =
f2 fO 47_,_[ 47_’_)(10—1 . Z.

Exp. -06
Calculate the impedance of the parallel —turned circuit as shown in fig.

14.52 at a frequency of 500 KHz and for band width of operation equal to 20
KHz. The resistance of the coil is 5Q.
Solution :

At resonance, circuit impedance is L/CR. We have been given the value of
R but that of L and C has to be found from the given the value of R but that of L
and C has to be found from the given data.

=2 20 %100 =—0r 1=
BW = il —2nxlorl—39,uH
1 1 R? 1\/ 1 52

fo——=\———=— % T

21T LC L 2m V¥ 39x10 C (39 x10 )
C=26x10"
Z =L/CR=39%x10°/2.6 x107 x5

= 3 x10°Q

Example: A coil of resistance 20€2 and inductance of 200uH is in parallel with a
variable capacitor. This combination is series with a resistor of 8000€2.The

voltage of the supply is 200V at a frequency of 10°Hz.Calculate
1) the value of C to give resonance

i1) the Q of the coil

i11) the current in each branch of the circuit at resonance
Solution:

r “_ - J

Xp=2rfL=21*10°%200%10"°=1256Q
The coil is negligible resistance in comparison to reactance.

1
2myIC

ff =
L
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il

10 = e
2rv20Q ~ O+ 107"

= -
if) Q=22 = 2 = 10° = 200 = =—=62.8

111) dynamic impedance of the circuit Z=L/CR=200*10"
6/(125%1071%%20)=80000Q

total Z=80000+8000=88000€2

[=200/88000=2.27mA

p.d across tuned circuit=2.27*10">*80000=181.6V current
through inductive branch= 5L = = 144.5m4
current through capacitor branch= @V'C

=181.6*271*10°%125%10"12=142.7mA

POLY-PHASE CIRCUIT

Three-phase circuits consists of three windings i.e. R.Y.B

E T E

N —

ER =Em SiIlWl‘:Em LO
Ey = Emsin(wt =120) = Em £ =120
Es = Epsin(wt — 240) = Ew £ — 240 = Ep £120
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3 - @ Circuit are divided into two types
e Star Connection
e Delta Connection

Star Connection :—

RY
~ -—- Neutral

VN

Y

B

If three similar ends connected at one point, then it is known as star connected
system.

The common point is known as neutral point and the wire taken from the
neutral point is known as Neutral wire.
Phase Voltage :—

It is the potential difference between phase and Neutral.
Line Voltage : —

It is It is the potential difference between two phases.
Relation Between Phase Voltage and Line Voltage : —
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Line VolatageVzy = Van = Vyn

Vi = J{ Van + Vyn — 2VenVyn Cos60°

—}VZ + V20 =2V, V—x1
= Ph ph phVph 2

RN
=\3Vpr = \N3Vpy
Vi = ,(3VPh

Since in a balanced B —phase circuit VRN= VYN = VBN=Vph
Relation Between Line current and Phase Current :-
In case of star connection system the leads are connected in series with
each phase
Hence the line current is equal to phase current
IL = Ipn
Power in 3- Phase circuit:-

P=V phl ph cos ¢ per phase
=3V phlI ph cos ¢ for 3 phase

= SVT:[;IL cos @ (QVL =\/3_Vph
P=+3V, I cosg
Summaries in star connection:
i) The line voltages are 1207 apart from each other.
ii) Line voltages are 30% ahead of their respective phase voltage.

i11) The angle between line currents and the corresponding line voltage is 30+
iv) The current in line and phase are same.

Delta Connection :-
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If the dissimilar ends of the closed mesh then it is called a Delta

Connected system
Relation Between Line Current and Phase Current :-

— —

Line Current in wire — 1 =:R-. Y

—

Line Current in wire -2 ='Y-'B

— —

Line Current in wire — 3 =, B-: R

I =1Ir—-1y

= \/1R2+1y2 — 21 g Iy cos 60°

2 2 1
=}1ph 1 =2 pFon X 2

= ){;phz 1=\ 31 2

fz = '\"‘?Iph
Relation Between Line Voltage & Phase Voltage : —
Ve = Vph

Power = =~[3V. I 1 cosp
Summaries in delta:
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i)Line currents are 12 0% apart from each other.

ii) Line currents are 30% behind the respective phase current.
111) The angle between the line currents and corresponding line voltages is 30+
Measurement of Power : —
(1) By single watt-meter method
(2) By Two-watt meter Method
(3) By Three-watt meter Method
Measurement of power By Two Watt Meter Method :-

Phasor Diagram :-
Let VR, Vv, VB are the r.m.s value of 3-¢ voltages and IRr,ly,IB are the r.m.s.
values of the currents respectively.
Current in R-phase which flows through the current coil of watt-meter
Wi=Ir
And Wa =1y

Potential difference across the voltage coil of W, = Vg = Vz -V3

— —

And W =Vyg=Vy—- V3
Assuming the load is inductive type watt-meter W1 reads.

W1 = Vgp I cos(30 — @) (1)
Wy =V I cos(30 = @) ~======mmmmmmmmmmmme oo
Wattmeter W» reads
i, = Vi Ly COs(3U + @)
2

Wy =V I cos(30 + @) (2)
Wi +Wy =V I cos(30 — @) +V I cos(30 + @)

=V I [cos(30 —¢) +V1 I cos(30 + ¢)]

=V I (2 cos 30° cosQ)

V3
= Vil (2% —2005q0)

Wi+ =BV 1 1 cos® 3)
W1 =Wy =V I [cos(30 — @) — cos(30 + @)
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Variation in wattmeter reading with respect to p.f:

=V I (2sin 30° sin @)

=Vl (2% l2 X sin )

W1 =Wy =V I sing
Wl -Wr = Vi I sing
w+w  \J3VI cosg
1 2 L L

Tlﬁ; = tan@

t
- ‘/3W—+W

"

W,

w-w

= @ = tan 3W1+I/IZ/

Pf W1 reading W3 reading
=0,cos =1 +ve equal +ve equal
=60,cos =0.5 0 +ve
=90,cos =0 -ve, equal +ve equal

Exp. : 01

A balanced star — connected load of (8+56). Per phase is connected to a
balanced 3-phase 100-v supply. Find the cone current power factor, power and
total volt-amperes.

Solution :

Z =482 +6% =100

Voh =400/ {3 =23/v

Lph =Von!Zpn =231/10=23.14
1) IL = Zph=23.1A
ii)  P.f.=cosB = Rph/zph = 8/10 = 0.8 (lag)

iii) PowerP = \gVL I cosé

= 3 x 400 x 23.1x 0.8

=12, 800 watt.

iv)  Total volt ampere s =V3 VL IL

=3 x 400 23.1

=16, 000 VA.
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Exp. -02

Phase voltage and current of a star-connected inductive load is 150V and
25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3-wire and
power is measured using two watt meters, find the readings of watt meters.
Solution :

Vph = 150V
VI=V3%150
Iph = IL = 25A

Total power = V3 VLIL cos ¢ = V3 x 150% 3 x 25 x 0.707 = 7954
watt. W1 + W2 = 7954.00, cos ¢=0.707
®=cos | (0.707) = 45°, tan 45° =
1 Now for a lagging power factor,
tan @ = A3(W1 — W) /(W1 + W2)

W —=w)
=>\]F 3
7954

1 2
S =) = 4592w

From (1) and (i1) above, we get
Wi =6273w W2 =1681w
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TRANSIENTS

Whenever a network containing energy storage elements such as inductor or capacitor is
switched from one condition to another,either by change in applied source or change in
network elements,the response current and voltage change from one state to the other
state.The time taken to change from an initial steady state to the final steady state is known
as the transient period.This response is known as transient response or transients.The
response of the network after it attains a final steady value is independent of time and is
called the steady-state response.The complete response of the network is determined with
the help of a differential equation.

STEADY STATE AND TRANSIENT RESPONSE

In a network containing energy storage elements, with change in excitation, the currents
and voltages in the circuit change from one state to other state. The behaviour of the
voltage or current when it is changed from one state to anotheris called the transient state.
The time taken for the circuit to change from one steady state to another steady state is
called the transient time. The application of KVL and KCL to circuits containing energy
storage elements results in differential, rather than algebraic equations. when we consider a
circuit containing storage elements which are independent of the sources, the response
depends upon the nature of the circuit and is called natural response. Storage elements
deliver their energy to the resistances. Hence, the response changes, gets saturated after
some time,and is referred to as the transient response. When we consider a source acting
on a circuit, the response depends on the nature of the source or sources.This response is
called forced response. In other words,the complete response of a circuit consists of two
parts; the forced response and the transient response. When we consider a differential
equation, the complete solution consists of two parts: the complementary function and the
particular solution. The complementary function dies out after short interval, and is referred
to as the transient response or source free response. The particular solution is the steady
state response, or the forced response. The first step in finding the complete solution of a
circuit is to form a differential equation for the circuit. By obtaining the differential
equation, several methods can be used to find out the complete solution.

DC RESPONSE OF AN R-L CIRCUIT

Consider a circuit consisting of a resistance and inductance as shown in figure.The inductor
in the circuit is initially uncharged and is in series with the resistor.When the switch S is
closed ,we can find the complete solution for the current.Application of kirchoff’s voltage
law to the circuit results in the following differential equation.

s R
A A

v 2 | D al.
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Figure 1.1
VERIHFLE e 1.1
dt R. V
OHT T T T ——————— 1.2

In the above equation, the current | is the solution to be found and V is the applied constant
voltage. The voltage V is applied to the circuit only when the switch S is closed. The above
equation is a linear differential equation of first order.comparing it with a non-homogenious
differential equation

R m o b e s st s sns 1.3

whose solution is

-t ™ —pr = —
w. | Ke

Where c is an arbitrary constant. In a similar way , we can write the current equation as

i R { r R
-i=¢ -l=Jz 15 ’—[;
g 'L +eT —g'L
i=c ¥ dt
: (e v
Hence,i =C € & +— e, 1.5

To determine the value of ¢ in equation ¢, we use the initial conditions .In the circuit shown in
Fig.1.1, the switch s is closed at t=0.at t=0-,i.e. just before closing the switch s, the current in the
inductor is zero. Since the inductor does not allow sudden changes in currents, at t=o+ just after
the switch is closed,the current remains zero.

Thusatt=0,i=0
Substituting the above condition in equation c, we have

O=c+

¥ |

Substituting the value of c in equation c, we get

T =Rt
1=_-- €L
1=_ (1-et)
— I = L
i=1- (1- &£ ) (where -
_— r= Timeconstant ==
i=17.(1- £ ) (where S 1.6
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b

0 1 2 3 4 5 €& 1C
Figure 1.2

=2r
=8t
¥

Equation d consists of two parts, the steady state part o= V/R) and the transient part " - € & |

When switch S is closed , the response reaches a steady state value after a time interval as
shown in figure 1.2.

Here the transition period is defined as the time taken for the current to reach its final
or stedy state value from its initial value.In the transient part of the solution, the
quantity L/R is important in describing the curve since L/R is the time period required
for the current to reach its initial value of zero to the final value 7/ ~ =V/R. The time

=82

constant of a function i_ 79T is the time at which the exponent of e is unity, where e

is the base of the natural logarithms.The term L /R is called the time constant and is
denoted by t.

So, T= — sec

o] e

Hence, the transient part of the solution is

=RC T =T

¥
i= Re

At one Time constant, the transient term reaches 36.8 percent of its initial value.

i(t) =- &

v 4

=Zet =-0368 -
& R

Similarly,

i[2‘r)=—%e'3 =-0.135-
i(31) =-Z¢=% =-0.0498 -
i(51)=-—¢~F =-0.0067 =

After 5 TC the transient part reaches more than 99 percent of its final value.
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In figure A we can find out the voltages and powers across each element by using the
current. Voltage across the resistor is

v -8
_: :R] = R-'__ (1_ GT )

~R#
)

Hence, 1vz=V(1- el )

Similarly, the voltage across the inductance is

3

ai TR An A
— X m— ——
vy =L, gt =L, ) £

et =y et

The responses are shown in Figure 1.3.

Figure 1.3

Power in the resistor is

i 1R i S
Fg=rzi=V(1- ¢7 ){1— &7 )Ix-
a5 =iz BH
=—(1- 28¢ )+& <
Power in the inductor is
=3 =8
_ gL X=t.— 8l )
Fr=t:i=V ‘
2 =ia0  -zfz
:__( [ o i '

The responses are shown in figure 1.4 .
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Figure 1.4
Problem: 1.1
VA,
60V ! ' é‘
Figure 1.5

A series R-L circuit with R = 30Q and L = 15 H has a constant voltage V = 50 V applied at t=0 as

shown in Fig. 1.5 . determine the current i, the voltage across resistor and across inductor.

Solution :
By applying Kirchoff’s voltage Law, we get

155 +30i =60

= si= 42i=4

The general solution for a linear differential equation is
i=ce— 7.4 8RS

where P=2,K=4

putting the values

. _ =2t [ 4a2t
i=cem oo+ B AT gy
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At t=0, the switch s is closed.

Since the inductor never allows sudden change in currents. At t=C:— the current in the circuit
is zero. Therefore att=_—:,i=0

==.0=c+2

=.c=-2

Substituting the value of c in the current equation, we have
i=2(1- 7> )A

voltage across resistor (% =) =iR =2(1- ¢ 72- ) x30=60(1- e ~2-) Vv

- % " o
voltage across inductor (V) =L=:=15  @&2(1- e~z ) =30 = 287=Fy= 608"

DC RESPONSE OF AN R-C CIRCUIT

Consider a circuit consisting of a resistance and capacitance as shown in figure.The capacitor in the
circuit is initially uncharged and is in series with the resistor.When the switch S is closed at t=0, we
can find the complete solution for the current.Application of kirchoff’s voltage law to the circuit
results in the following differential equation.

. s
o ' My

i

[ =

Figure 1.6

By differentiating the above equation, we get

[ i,
O0=R 0= 4= s 1.8

=+ =020 s 1.9

102




CNT, Semester 3", Diploma Engineering (Electrical & Electronics)

Equation c is a linear differential equation with only the complementary function. The particular
solution for the above equation is zero. The solution for this type of differential equation is

P "
b

P=C € SRE e 1.10

To determine the value of ¢ in equation ¢, we use the initial conditions .In the circuit shown in
Fig. the switch s is closed at t=0. Since the capacitor does not allow sudden changes in voltage, it
will act as a short circuit at t=0+ just after the switch is closed.

So the current in the circuitat t = 0+is

Thus at t = 0, the currenti= __

Substituting the above condition in equation ¢, we have
— = C

Substituting the value of ¢ in equation c, we get

Figure 1.7

When switch S is closed , the response decays as shown in figurre.
The term RC is called the time constant and is denoted by t.
So, T=RC sec
After 5 TC the curve reaches 99 percent of its final value.
In figure A we can find out the voltage across each element by using the current equation.

Voltage across the resistor is
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Hence, vz =V &€

Similarly, voltage across the capacitor is

o

L o
-— 7
_ gt

-
&

{—x RC ¢RC |
= - YK€ i+

C
= _VERE 4+ ¢

At t=0,voltage across capacitor is zero
So,c=V

And
oy (l— &)

The responses are shown in Figure1.8.

LT L

e

Ur

0 1 2 3475 & T¢

Figure 1.8

Power in the resistor is

- . -

- ¢
FR=7-i=V &R = * gi¢

Power in the capacitor is

||

£
1

EN

=]
o

2 ¥
- s eRC) R
Foo=v i=V(l- E

o
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oz =% oz
=-_ (€RC. @RC)
The responses are shown in figure 1.9.

P

V2
R

Figure 1.9

Problem: 1.2

A series R-C circuit with R =10Q and C =0.1 F has a constant voltage V = 20 V applied at t=0 as
shown in Fig. determine the current i, the voltage across resistor and across capacitor.

(=]
)

Ke ]

S

0y =0.1F

1
§i

Figure 1.10

Solution :

By applying Kirchoff’s voltage Law, we get
10i+ - [idt_pg

Differentiating w.r.t. twe get

10 &+ =0

— 2:': +1=0

The solution for above equation is
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i=ce-" =

At t=0, the switch s is closed.

-~

Since the capacitor never allows sudden change in voltages. At t=C:— the current in the circuit

isi=V/R=20/10=2 A
. Thereforeatt=0,i=2 A

= =. the current equation is i=2z-""-

voltage across resistor ( 1”':‘-’) =iR=2 7 :x10=20 " =v
voltage across capacitor (+ -) =V {l— eRt)_ 20(1- e~ 9V

DC RESPONSE OF AN R-L-C CIRCUIT

Consider a circuit consisting of a resistance, inductance and capacitance as shown in figure.The
capacitor and inductor in the circuit is initially uncharged and are in series with the resistor.When
the switch S is closed at t=0, we can find the complete solution for the current.Application of
kirchoff’s voltage law to the circuit results in the following differential equation.

N W

i<~ =c

Figure 1.11

VERIALE 42 e 1.12

By differentiating the above equation, we get

0=R £ Ladiar?+ Zi= PPN B &
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The above equation c is a second order linear differential equation with only the complementary
function. The particular solution for the above equation is zero. The characteristics equation for this

type of differential equation is

o 1.15

The roots of equation 1.15 are

- FRYS 1

Dy D;__ .ty {EJ Tic
| . T,
~ '{.i._\_ — 1
By assuming ¥..=zr.and ¥.-.= VA, LC

51 = f{i T Sr":; and D: =K. i K-

Here & .- may be positive,negative or zero .

FRAS 1
Case]: &aiéyPustiive tE‘ > =

Then, the roots are Real and Unequal and give an over damped Response as shown in
figure 1.12.

The solution for the above equationis:i= C_; gifethiafi, (o g
A
—
o t

Figure 1.12

-~

I~

Case II': K; {5 Negative (=]

s
EA
m
™

Then, the roots are Complex Conjugate, and give an under-damped Response as shown in
figure 1.13.

—y
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Figure 1.13

Kerf )
The solution for the above equationis:i= & - w1 ¢08Kzt +0; sin Kyt

Case Il : K, fs Zeve (£) = 1

Then, the roots are Equal and give an Critically-damped Response as shown in figure 1.14.

if

Figure 1.14
The solution for the above equation is:i= eRe(Cy + Cot)
Problem: 1.3

A series R-L-C circuit with R = 20€), L = 0.05H and C = 20 pF has a constant voltage V=100V
applied at t=0 as shown in Fig. determine the transient currenti.

L 3005H

R

100 V 5

Co= 20 uF

b

Figure 1.15

Solution :
By applying Kirchoff’s voltage Law, we get

1 [idt

a@x 10-=

100=30i +0.05% +

Differentiating w.r.t. twe get

dt 1
QOSe=1/di= 0 dr+ 20x10-%{ =0
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= =, @%dr? 00w 4+ 10%120
== (0%, 4000+ 10%i = 0
The roots of equation are

<00 P
=+ i=] —-10%
e e T

- -
\

ﬂl-’ D" =

_ 200 TvC20007 — 10°
) = -200+j979.8

f2= 200-j979.8

j= & RF[C cosRy £+ CycozRo ]

i = €729[C) cos979.8¢ + C2an979.8¢]

At t=0, the switch s is closed.

Since the inductor never allows sudden change in currents. At t=:— the current in the circuit
is zero. Therefore at t=C— 1,1 =0

=-.i=0=(1) [C; cog @+ C; sin (]

2T

=2 Gz g and i = 82 [C, 2in 979.8¢ ] 4

Differentiating w.r.t. twe get

di - r—
i C; [™30079.8 coa979.8 ¢ + e~ 00 (—20Q)2in 979.8¢ ]

At t=0, the voltage across the inductor is 100 V
&=100 or &&=2000

p—
-_

2 A

GI.
At t=0, @ 2000= C.979.8 cozd

The current equation is
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......

ANALYSIS OF CIRCUITS USING LAPLACE
TRANSFORM TECHNIQUE

The Laplace transform is a powerful Analytical Technique that is widely used to study the
behavior of Linear,Lumped parameter circuits. Laplace Transform converts a time domain
function f(t) to a frequency domain function F(s) and also Inverse Laplace transformation
converts the frequency domain function F(s) back to a time domain function f{(t).

L{f()}=F(s) = .l.:-.c?-':: FE) AE e e e LT 1

DC RESPONSE OF AN R-L CIRCUIT (LT Method)

Let us determine the solution i of the first order differential equation given by equation A which
is for the DC response of a R-L Circuit under the zero initial condition i.e. current is zero, i=0 at

t=C1~ and hence i=0 at t= 97 in the circuit in figure A by the property of Inductance not allowing
the current to change as switch is closed at t=0.

PO S
f ) af_

Figure LT 1.1

<
1 |
1]
| +

dt

V=Ri+L G5 et s LT1.1

Taking the Laplace Transform of bothe sides we get,

e O E AR O IR () ) LT 1.2
=RI(s)+L[sI(s)] (I(0) =0 : zero initial current )
=I(s)[R +L s]
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= =

)

]
Y
|

= i::-](s) = m ............................................
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Taking the Laplace Inverse Transform of both sides we get,

* EHigsyy = o) = 7Y

LE-':J}

p-ip HE
i(t) = ¢ sL&! "‘-r]} ( Dividing the numerator and denominator by L )

putting % = #¢L we get

1
L (.F "--‘".f

)L
=

b peigk
i(t) = BT .

% 1 &

. L-l{;_ E_ (F=FIES -J? . . ®)
i(t) = & = TEILLT BY ((again putting back the value of **~

}

-R:‘ 1’
“') - &7T) (where !‘.,=;}

i(t)y="=r

'Q-g.“
=

i(t)=1- (1-5%) (where t=Timeconstant= ’_ ) et LT 14

It can be observed that solution for i(t) as obtained by Laplace Transform technique is same as
that obtained by standard differential method .

DC RESPONSE OF AN R-C CIRCUIT(L.T.Method)

Similarly,
Let us determine the solution i of the first order differential equation given by equation A which is

for the DC response of a R-C Circuit under the zero initial condition i.e. voltage across capacitor is
zero, Y~ =0 at t=C:—_and hence V. =0 at t=C:— in the circuit in figure A by the property

of capacitance not allowing the voltage across it to change as switch is closed at t=0.
o My

(D)

[ =

Figure LT 1.2

e LT 15

Taking the Laplace Transform of both sides we get,

=R I(s) + 1;[ =] (1(0) =0 : zero initial charge )

Ros+

=IE)[R+= ]=15)FE= ]
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Cs ¥e
= uI(s) o [ (BCH] = (ECLE e LT 1.7

Taking the Laplace Inverse Transform of both sides we

i) = L{——}

(RCs=%

get, == LH{j(9)} =

5%
i(t)= £~ ]?; 1 ( Dividing the numerator and denominator by RC)
CORC
putting c = =:_; we get
pip FB, v
l(t) = {L':""']) =g ot

_ Taog \
i(t) = - #2%(putting back the value of A

i(t) =/o € (Where [, = 2 wovoeoscersssoeesoensn LT 1.8
&
i(t)=1. :’_T) (where t=Timeconstant= RC)

It can be observed that solution for i(t) as obtained by Laplace Transform technique in q is
same as that obtained by standard differential method in d.

DC RESPONSE OF AN R-L-C CIRCUIT ( L.T. Method)

i~ =—c

Figure LT 1.3
Similarly,

Let us determine the solution i of the first order differential equation given by equation A which is
for the DC response of a R-L-C Circuit under the zero initial condition i.e. the switch s is closed at
t=0.at t=0-,i.e. just before closing the switch s, the current in the inductor is zero. Since the inductor
does not allow sudden changes in currents, at t=o+ just after the switch is closed,the current remains
zero. also the voltage across capacitor is zero i.e. I~ =0 att=C:~ and hence 1. =0

w

at t= U7 in the circuit in figure by the property of capacitance not allowing the voltage across it
1 to suddenly change as switch is closed at t=0.

+=l1dr
V=Ri+L L R LT 1.9

22
Y L

Taking the Laplace Transform of both sides we get,
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= =RI(s) ++ L[5 1(5) -100) T+ EE +1(0) ] covrrvrrerrerrerrenrons LT 1.10

=:»§ =RI(s) +L[z1{g)] +% [ ] €0} = Q:zero initial current & 1(0) =0 : zero initial

w
" |.-w,

charge )

EF-B L Dre
Ll*=Rz=1

i 1o
== =I(S)[R+ls + =] = I(s)[

e
-

T A ve
==10s)= 3 *;.'.c:=-—sc.=-1_:-] " (LCP4BCIL)

Taking the Laplace Inverse Transform of both sides we get,

£ - Ve
=> A1)} = 48 = L)

e
i) =L - T + ( Dividing the numerator and denominator by LC )
Frae
i(t)= L7 [5_:.3__;._]3
S CLUEE
: B L
putting == =— and m = I—C we get
- ‘\:‘ L
g B
i(t) = [Fa2mssast]

fr— A
where, 5, ,5; = —=—-— —ULVX =" =— L7

where, % =— « =— and =vE&T-w*
2L N -

By partial Fraction expansion, of I(s),

_ A 13
I(S) S=5s =5,

¥ ¥
- I _. _I
(Bp=8y (§.~8s
¥
T 1 -
= — - ).
I(s) =530 msp (s

Taking the Inverse Laplace Transform
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equation.

Now depending upon the valuesof - . . _and_ .. _ , we have three cases of the response.

CASE I: When the roots are Real and Unequal, it gives an over-damped response.

or e - ; Inthis case, the solution is given by

or i()=_ _ ”%F A

CASE II : When the roots are Real and Equal, it gives an Critically-damped response.

i

: 13
23 _ '\‘,‘_C . . . . .
-~ = or ... ;Inthis case, the solution is given by
or
I(D)=6"" _ &2t ) fort e 0 LT 1.13

CASE III : When the roots are Complex Conjugate, it gives an under-damped response.

g (1—,. or = <« ;Inthis case, the solution is given by

i(t)=4 git g gTF fort = 0

N AT
=g R RS- = . [y A
where, 5y 57 = # ==l by X -y

Let vor—w® ==+ =&* =j wg where j=¢=1 andw o~ —x*

Hence, i(t) =e=%2(4, /¥ A, g™/ )

glWdl ag=figt

l(t) 29_7‘? [:‘,%1 +.-.¥.::1%—‘-}+ 14{.’;1 —_-X::l {e-’"df—e-:udﬁ}]

- 2}

i(t) =~ [(& + &;)cosmgt +] (4 —&;) sinexgt ]

i(t) =e=%%(By coswgat +Bsalnwgt) ... LT 1014

JIJ)lIllIlIl"IIIIHH}lIJHJIJHlIlHlIIIHIIIHHIHHIJIJHJIlHl)HXXXXXXXXXXXXXXXXXIl)ll"IIIIIIHHHIHHHHHHHHIHIHHIH
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TWO PORT NETWORKS

Generally, any network may be represented schematically by a rectangular box. A network may be
used for representing either Source or Load, or for a variety of purposes. A pair of terminals at
which a signal may enter or leave a network is called a port. A port is defined as any pair of terminals
into which energy is withdrawn ,or where the network variables may be measured .One such
network having only one pair of terminals (1-1')is shown figure 1.1.

Network
1 f
1 "rl IZ +
+o——> 1aa be | =*— 39

Input y v Output
1 2 port
—e——tag” bet— e

I =4

Figure 1.1

A two-port network is simply a network a network inside a black box, and the network has only two
pairs of accessible terminals; usually one one pairs represents the input and the other represents the
output. Such a building block is very common in electronic systems, communication system,
transmission and distribution system. fig 1.1 shows a two-port network,or two terminal pair
network,in which the four terminals have been paired into ports 1-1’ and 2-2’.The terminals 1-1’
together constitute a port. Similarly, the terminals 2-2’ constitute another port. Two ports
containing no sources in their branches are called passive ports ; among them are power
transmission lines and transformers. Two ports containing source in their branches are called active
ports. A voltage and current assigned to each of the two ports. The voltage and current at the input
terminals are iand . ; where as ¥~ and ! - are entering.into the network are ¥, ¥~,and %, 7 -.
Two of these are dependent variable, the other two are indepent variable. The number of possible
combinations generated by four variable, taken two at time, is six. Thus, there are six possible sets of
equations describing a two-port network.

OPEN CIRCUIT IMPEDANCE (Z) PARAMETERS

A general linear two-port network is shown below in figure 1.2.

The z parameters of a two-port network for the positive direction of voltages and currents may be
defined by expressing the port voltages 1% and 1= in terms of the currents {-: and_7 -. Here, 1= and_
V- are two dependent variables and - and 7 - are two independent variables.
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"'rl Iz
Input Vv y Output
port 1 2 port
. - 1' ) _.a}. bi‘ :2’
Figure 1.2

The voltage at port 1-1’ is the response produced by the two currents -: and 7 -.

thus

LR R b 1.1

Va=Zoadi +2aaks e, 1.2

Z11,Z12, 221 and Z:2z2 are the network functions, and are called impedance(Z) parameters, and
are defined by equations 1.1 and 1.2.

These parameters also can be represented by Matrices .

We may write the matrix equation [V] = [Z][I]
h
where V is the column matrix = [ L": ]
Zisasquare matrix= [ o+ 5]
fg1 433

Iy

and we may write l'in the column matrix = = [ ‘r:]

4 [

21y Zi:] L
Thus, [ ¥2 1= "4

dz1 ["-.:]

The individual Z parameters for a given network can be defined by setting each of the port
currents equal to zero. suppose port 2-2’ is left open circuited, then /- =0.

T
o

Thus 211 = &l i =10

where
Zy4 1sthe driving point impedance at port 1 — 1'withport 2 -
2'open circuited. It iz called the open circuit input impedance.

similarly,

where
Z;4 13 the transfer impedanceat port 1 — 1'withport2 -
2'open circuited. It iz called the open circuit forward transfer impedance
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Suppose port 1-1’ is left open circuited, then - : =0.

f-l=0

o |t

Thus, <1z =

where
Zq7 dzthe transfer impedanceatport 2 - 2" withport 1 -
1‘open circuited. It iz called the open circuit reverse transfer impedance

similarly,

232 - E =0

where

Z;; iz the open circuitdriving point impedance at port 2 — 2'with port 1 —

1'open circuited. It iz also called the open circuit output impedance

.The equivalent circuit of the two-port networks governed by the equations 1.1 and 1.2 ,i.e. open
circuit impedance parameters as shown below in fig 1.3.

— e .
1 z"*
T Z1t Zy T
V1 V!
l Ziz b : Ity l o
1 x
Eie 40 3
Figure 1.3

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

or
2y = 2y

It is observed that all the parameters have the dimensions of impedance. Moreover, individual
parameters are specified only when the current in one of the ports is zero. This corresponds to one
of the ports being open circuited from which the Z parameters also derive the name open circuit
impedance parameters.

Problem 1.1
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Find the Z parameters for the circuit shown in Figure 1.4

*
£
.
&
E
- —

AL R T

“

L

LR B R
SR

PR

E

. &
R AR

Ve e gy,

A

"W

N
s
-
®
<
B
3
&
A B

Figure 1.4

Solution The circuit in the problem is a T network. From Eqgs 16.1 and 16.2 we have

Vi=24, 4 + 4215 and V; =Zpq1y +Z52l2

When port b-b’ is open circuited,

Where ¥} =13{z, +2;)
&q1 = 52,_-_-'*‘:7)
¥
— 0

- ) ¢ s ¥ -
L=hLZ wZn =2y

When port a-a’ is open circuited, -: =0

Z’l: = :1 =N
x N
where V1 =0y gng &12=2;

It can be observed that =12 = <11 , so the network is a bilateral network which satisfies the

principle of reciprocity.

SHORT-CIRCUIT ADMITTANCE (Y) PARAMETERS
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—= Iy b =— 2
1 & +
Linasr
Vi network Ve
- , = o
Figure 1.5

A general two- port network which is considered in Section 16.2 is shown in Fig 16.5The Y
parameters of a two- port for the positive directions of voltages and currents may be defined by
expressing the port currents Z_i and - in terms of the voltages 'z and 1-. Here:, I~ are

dependent variables and 'z and - are independent variables. - may be considered to be the
superposition of two components, one caused by 1% and the other by 1%-.

Thus,

11 - ‘1—11?\“1 + ‘1-].;\‘*

SIMIlarly, e s 1.4

3 , i "7':'1 and ¥ are the network network functions and are also called the admittance

(Y) parameters. They are defined by Eqgs 16.3 and 16.4. These parameters can be represented by
matrices as follows

[11=[Y1[V]
L., T11 T2 Vi
where I=[ 1 Y-l AR *1‘__:] andV = \r:]
Thus,
I. Yu Y v

[o.0=f Yar Toagp Vo

The individual Y parameters for a given network can be defined by setting each port voltage to
zero. If we_let V'~ be zero by short circuiting port 2-2’ then

|
11 = Vol =0

Ti1 js the driving point admittance at port 1-1’, with port 2-2’ short circuited.lt is also called
the short circuit input admittance.

)

-

Y1 = ¥l

=0

Y

21 js the transfer admittance at port 1-1’, with port 2-2’ short circuited.lt is also called the short
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circuited forward transfer admittance. If we let % be zero by short circuiting port 1-1’,then
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7

‘1-'1: = ¥z v _.=0

12 is the transfer admittance at port 2-2’, with port 1-1’ short circuited. It is also called the short
circuited reverse transfer admittance.

122 s the short circuit driving point admittance at port 2-2’, with port 1-1’ short circuited. It is also
called the short circuited output admittance.The equivalent circuit of the network governed by
equation 1.3 & 1.4 is shown in figure 1.6.

— Iy . -— Iy

1 2

|
{1 w[Jandd Dol

N

Figure 1.6

If the network under study is reciprocal or bilateral, then in accordance with the reciprocity principle

I L
Huy=0 - Ye=0

or

Y=Y
It is observed that all the parameters have the dimensions of admittance. Moreover, individual
parameters are specified only when the voltage in one of the ports is zero. This corresponds to one
of the ports being short circuited from which the Y parameters also derive the name short circuit
admittance parameters.

Problem 1.2 Find the Y-parameters for the network shown in Fig.1.7

a NV AVAVAY, b
T e Mo 50 4_121
Vi 2Q §4Q Vo
|

a'l L3,
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Figl.7
Solution :
X
‘{11 =¥Vl + - =0
When b- . is short circuited, %" = 0 and the network looks as shown in Fig. 1.8(a)
a AVAVAY AVAAY, b
A = I
1 10
2Q
Vi — Zgg 20 V=0
a b
Fig.1.8(a)
o= l1deq
Z‘E‘q= 2 7!
SO, _' i = 11 -
x|, S
Ty = "f".l }‘= == =
-
Tar = vl v . o0
When b- =’ is short circuited, - & I] X - =f
so,-I, =—

and ‘)?:1 =::—= V3 =0 =- 1

Ve
-

similarly, when port a-zis short circuited, V== 0 and the network looks as shown in Fig. 1.8(b)
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I ""'_.fg
d AVAVAY AN T b
1Q 20 T
Vi=0 2Q 4Q Vo ~— 74

Y- = I:Z‘iqwhere Zeq is the equivalent impedance as viewed from b-&y ..

=
qu=_; o
o _xE
1z

Taa - Valy . =0e-

Tia - %lv .0

| e
]
o

with a-2" is short circuited , -I&

Since, I =5 =
]
I 2xs ¥ Y
5 g =2

- 1, 1
SO,\::fz'f

The describing equations in terms of tye admittance parameters are

l. =

[

- i,
\‘1 -+ —_‘,‘:

1 5
.=——‘\' - Yn
l - ;+8\_

Transmission (ABCD) parameters
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Figure 1.9

Transmission parameters or ABCD parameters are widely used in transmission line theory and
cascaded networks. In describing the transmission parameters, the input variables i and I~ i at port
1-1’, usually called the sending end are expressed in terms of the output variables 1% and : - at port
2-2’, called, the receiving end.The transmission parameters provide a direct relationship between
input and output.Transmission patameters are also called general circuit parameters, or chain
nparameters. They are defined by

R e 2 R 15

The negative sign is used with - - , and not for the parameter B and D. Both the port currents /- . and -
!, are directed to the right, i.e. with a negative sign in equation a and b the currents at port 2-2’
which leaves the port is designated as positive.The parameters A,B,C and d are called Transmission
parameters. In the matrix form, equation a and b are expressed as,
b % B Vs
[h=te B[ =i
A B

The matrix ~€ D7 is called Transmission Matrix.

For a given network, these parameters can be determined as follows. With port 2-2” open circuited
i.e. I.- =0; applying a voltage 7 at the port 1-1’, using equ a , we have

A:-‘l I.=10and C=" =0

hence,

e | =

=—_" =10 g4/ =0

r

Vo

1/Ais called the open circuit voltage gain a dimension less parameter. And - '

=0 E;1| 3':

=2y
Iy

=0 is called open circuit transfer impedance. with port 2-2’ short circuited, i.e. ¥-= =0, applying

voltage V; at port 1-1’ from equn . b we have

=0

I
B==={t5=0 and-D= =|r
I L
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j; ’E ro =0 ¥, 71> =0is called short circuit transfer admittance

and,

- _% —i'_i s =0 34| v, =0 is called short circuit current gain a dimension less parameter.
Problem 1.3

Find the transmission or general circuit parameters for the circuit shown in Fig.1.10

e SRS |3

at —AAA- AAN *b
T T
Vi 5Q Vs
| ;

7 b’
a
Fig. 1.10

Solution : From Equations 1.5 and 1.6, we have
’\-"1 = ."‘ZV: - Bf:

I. = &V, = DI,

when b-b’ is open circuited i.e. I.-- =0, we have

Ve

—
A= 1§

l-m(]

and

LN i)

where % =51 .and-%7.. 25,1, and hence, A=

when b-b’ is short circuited i.e. V- =0, we have

et [ nr
o e

Il
=

2 =0 and D =-

5 7
=1"v7;andso,B= £

In the circuit, -I.--
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similarly, L-=—%7.and-I.-=-%".

(=]

and hence D = P

Hybrid parameters

Hybrid parameters or h-parameters find extensive use in transistor circuits. They are well suited to
transistor circuits as these parameters can be most conveniently measured. The hybrid matrices
describe a two-port network, when the voltage of one port and the current of other port are taken
as the independent variables. Consider the network in figure 1.11.

If the voltage at port 1-1" and current at port 2-2’ are taken as dependent variables,we can
express them interms of i and %™~ .

The coefficient in the above terms are called hybrid parameters.In matrix notation

A

1 h'.:] Iy
[ 1272 "By hp? [ Vo

-
-

1 ﬁi- ...;_Iz +
+e - be1——" 29
port 11 £ port
. . r ry "
o G b2
Figure 1.11

from equation a and b the individual h parameters may be defined by letting L =053nd v~ =0,
when %7.- = 0,the port 2-2’ is short circuited.

&
Then 1 = %!+ =0 = short circuit input impedance.

I
h:i = bE

-. =0 = short circuit forward current gain

Similarly, by letting port 1-1" open, L =0

i-: =0 = open circuit reverse voltage gain
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EH

%22 = Wl .. =0 = open circuited output admittance

Since h-parameters represent dimensionally an impedance, an admittance,a voltage gain and a

current gain, they are called hybrid parameters .An equivalent circuit of a two-port network in terms

of hybrid parameters is shown below.

_"11

—-— I

t ' M4

v | <Dh21 J

l 2 Vi

hoo Vo

Figure 1.12

Problem 1.4

Find the h-parameters of the network shown in Fig 1.13.

a AAN- AAA/
T “h g 20

Vi 20

Fig.1.13
Solution :

From equations 1.7 and 1.8 , we have

Iz ¥ Iz
hli = )__-‘ 7. :O, h:'l = 1zl - :0, hl: = ¥z :1=ﬂ ; h:: = ¥z i=0
If port b-%+  is short circuited, ¥ 7. = 0 and the network looks as shown in Fig. 1.14(a)
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a AN AN — b
T h 1Q 20 2
— V ; 2Q §4 Q Vo =0
Z&q
a b
Fig.1.14(a)

I

-

hll = I -, =0; I‘fl =f1 qu

2"=‘dis the equivalent impedance as viewed from port a-Z ;: is 2Q
so, V;=RV

g =7*= 20

oy = :— - =0 when =0; - =I- -;—iand hence #;4 =1

If port a-z". is open circuited, I, = 0 and the network looks as shown in Fig. 1.14(b) then
. ly
AN «——AAMN—
h=0 49
1 2Q 1

Vi 229 §4Q V2

Fig.1.14(b)
B = vel s and Vo= 12y L=
3 = 14,‘1 _=_—
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Yo

hi: = ‘Y:S -7

B2

1 i
~=-and M- v i.=Q==-

INTER RELATIONSHIPS OF DIFFERENT PARAMETERS

Expression of z parameters in terms of Y parameters and vice-versa

From equations 1.1,1.2,1.3 & 1.4, it is easy to derive the relation between the open circuit
impedance parameters and the short circuit admittance parameters by means of two matrix
equations of the respective parameters. By solving equation a and b for [-i and I.--, we get

Vi &1z s o pell ‘1
v, z.)] - ogand [zli \“:] - .
where

is the determinant of Z matrix

T am S 6 4, 1.9
z:é:._

S+ . 10 U5 Y. S e 1.10
A 1 <
Z. - - -

comparing equations 1.9 and 1.10 with equations 1.3 and 1.4 we have

z d1z
o ZZ —
Y, =-22 ~
27k 12= - Oz
2oy

In a similar manner, the z parameters may be expressed in terms of the admittance parameters by
solving equations 1.3 and 1.4 for V7, and % ..

by Vg, o= el L TRt
[12 o) o ogand - [3':1 I:]_'

where is the determinant of Y matrix
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........................................................................... 1.11
R F e ettt e st ese s s e entenesee s 1.12
Sy .'.“.:;
_1_

comparing equations 1.11 and 1.12 with equations 1.1 and 1.2 we have
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General Circuit Parameters or ABCD Parameters in Terms of Z parameters

and Y Parameters

We know that

Vi=Aar -8 ; Iy = Y14V + Y12V

IL=CV;=D)h ; ; [ =12 Vy + Y2, 7;
Ve

A= E=0; = 2 ; B= = i;=0 ;D= ;=0

Vs Vs i Iz

Substituting the condition =0 in equations 1.1 and 1.2 we get

*

(178
il

Ve
-—
2
bt

A=

Substituting the condition =0 in equations 1.4 we get,

]
-
S

]

Substituting the condition I- =0in equations 1.2 we get

Substituting the condition I- =0 in equation 1.3 and 1.4 and solving for igives =I; ==

Where 4. is the determinant of the admittance matrix

Substituting the condition V- =0 in equations 1.4, we get

Ll\,‘:= :-!_=B

I

I
w1

-7

Substituting the condition %'~ =0 in equation 1.1 and 1.2 and solving for-1.-- gives -

~
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Where £ ._is the determinant of the impedance matrix
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2

=0 _z,

'.:B

\5:=0 _l;!._'

L

Substituting the condition %7 -=0in equations 1.3 and 1.4

we get

-] 0 =¥z

—_— i, = A

T = Y =D

T and 7 : representation

A two-port network with any number of elements may be converted into a two-port three-
element network. Thus, a two-port network may be represented by an equivalent T-

network, i.e. three impedances are connected together in the form of a T as shown in figure
1.15.

1*’ i T L—_-} + 2
h=> a Z; )
Vi ,: Z; Vs
1= = o
Figure 1.15

It is possible to express the elements of the T-network in term of Z parameters,or
ABCD parameters as explained below.

Z parameters of the network

z Wl -0 =
Zy Y1 =0 =z ez,
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From the above relations, it is clear that

Ly =21y -2y

ABCD parameters of the network

A=kl =0 _Zate¢
Ve < 2.

B= v
1.

When 2- 2" is short circuited

_ Vil
= ZpZotZalZp+lc)

T
1

Sz 7)) +EE
B=(Z, +2,) +&

C:__L’I?:O ::;

D=-—L-|T‘;a=0
1: -

When 2- 2" is short circuited

L _aA-1 _ D=1
L 4 Zp

I}
mil o=

) Dy

a C B C Fc

Problem :1.6

135




CNT, Semester 3", Diploma Engineering (Electrical & Electronics)

The Z parameters of a Two-port network are Ly = "Oﬂ, L0 = 180025 - Ty o5,

Find the equivalent T network and ABCD Parameters.
Solution :

The equivalent T network is shown in Figure 1.16

The ABCD parameters of the network are

2z 2.5
A= Ze+1=2;B=(Za T Zup & =250
- 1+ B
C= £ =0.02;D=1 %=3
In a similar way a two-port network may be represented by an equivalent =: - network,

i.e. three impedances or admittances are connected together in the form of =: as shown
in Fig1.17.

Zy Z
Z;
+ +
| S
> I + Y, Iy =
Vi Y; Ya Y,
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Fig. 1.16 Fig.1.17

It is possible to express the elements of the = : -network in terms of Y parameters or

ABCD parameters as explained below.

Y-parameters of the network

= 1

e P e

> Iz — —

Yoy =5+ V2 =0 =%:
P

T =35 Ve =0 33 ¥

A

12 =5 Vi =0=%:

Writing ABCD parameters in terms of Y parameters yields the following results.

kS R

A= Yoo = T

= i
B= T_'_’ ==
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9.1 CLASSIFICATION OF FILTERS

A filter is a reactive network that freely passes the desired band of frequencies while almost
totally suppressing all other bands. A filter is constructed from purely reactive elements, for
otherwise the attenuation would never becomes zero i n the pass band of the filter network. Filters
differ from simple resonant circuit in providing a substantially constant transmission over
the band which they accept; this band may lie between any limits depending on the design.
Ideally, filters should produce no attenuation in the desired band, called the transmission
band or pass band, and should provide total or infinite attenuation at all other frequencies,
called attenuation band or stop band. The frequency which separates the transmission
band and the attenuation band is defined as the cut-off frequency of the wave filters, and
is designated by fc

Filter networks are widely used in communication systems to separate various voice
channels in carrier frequency telephone circuits. Filters also find applications in instrumentation,
telemetering equipment etc. where it is necessary to transmit or attenuate a limited range of
frequencies. A filter may, in principle, have any number of pass bands separated by attenuation
bands.However, they are classified into four common types, viz.low pass, high pass, band pass and
band elimination.

Decibel and neper

The attenuation of a wave filter can be expressed in decibels or nepers.Neper is defined as the
natural logarithm of the ratio of input voltage (or current) to the output voltage (or current), provide

that the network is properly terminated in its characteristic impedance Z ¢ .

I

/1
e Al D

V, Two Port Vo

Fig .9.1 (a)

From fig. 9.1 (a) the number of nepers, N=log e [V1/V2] or loge [I1/12]. A neper can also be

expressed in terms of input power,P1 and the output power P2 as N=1/2 loge P1/P2. A decibel is
defined as ten times the common logarithms of the ratio of the input power to the output
power.

Decibel D=10 log10P1/P2
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The decibel can be expressed in terms of the ratio of input voltage (or current) and the output
voltage (or current.)

D=20 log10[V1/V2] =20 log1o[l1/12]

* One decibel is equal to 0.115 N.

Low Pass Filter

By definition a low pass (LP) filter is one which passes without attenuation all frequencies up

to the cut-off frequency fc, and attenuates all other frequencies greater than fc . The attenuation
characteristic of an ideal LP filter is shown in fig.9.1(b).This transmits currents of all frequencies
from zero up to the cut-off frequency. The band is called pass band or transmission band.Thus,the
pass band for the LP filter is the frequency range 0 to fc.The frequency range over which
transmission does not take place is called the stop band or attenuation band. The stop band for a LP

filter is the frequency range above fc .

T Ee i T Attenuation
o Band Attenuation o Pass
Band Band Band
fe 7 4 fe——F
Low Pass Filter High Pass Filter
o | Attenuation| pagg Attenuation o |Pass | Attenuation | Pass
Band Band Band Band | Band Band
f1 fz - f f‘l 1r f
f2

Sand Pass Flor Band Elimination Filter

Fig.9.1 (b)
High Pass Filter

A high pass (HP) filter attenuates all frequencies below a designated cut-off frequency, fc, and
passes all frequencies above f¢ . Thus the pass band of this filter is the frequency range above fc, and

the stop band is the frequency range below f¢ . The attenuation characteristic of a HP filter is shown
in fig.9.1 (b).

Band Pass Filter
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A band pass filter passes frequencies between two designated cut-off frequencies and
attenuates all other frequencies. It is abbreviated as BP filter. As shown in fig.9.1 (b), a BP filter has

two cut-off frequencies and will have the pass band f2 — f1; f1 is called the lower cut —off
frequency, while f2 is called the upper cut-off frequency.

Band Elimination filter
A band elimination filter passes all frequencies lying outside a certain range, while it

attenuates all frequencies between the two designated frequencies. It is also referred as band stop
filter. The characteristic of an ideal band elimination filter is shown in fig.9.1 (b). All frequencies

between f1 and f2 will be attenuated while frequencies below f1 and above f2 will be passed.

9.2 FILTER NETWORKS

Ideally a filter should have zero attenuation in the pass band. This condition can only be
satisfied if the elements of the filter are dissipationless.which cannot be realized in practice. Filters
are designed with an assumption that the elements of the filters are purely reactive. Filters are
made of symmetrical T, or it section. T and 1t section can be considered as combination of
unsymmetrical L sections as shown in Fig.9.2.

23 Zq Zq Z1
2 2 2 2
g TVE] e o o ] e st 5o Bl s 1 Ay M e
[J] 27, [J; 27, Z
(a) (b)
%1' ’Zzi Zi
L — - _J = —[ ST ey .__l,_,-

[ ]2z [ ] 2z [] 2. [[] 27,

oA e ook

(© (ch)
Fig. 9.2

The ladder structure is one of the commonest forms of filter network. A cascade
connection of several T and it sections constitutes a ladder network. A common form of the ladder
network is shown in Fig.9.3.

Figure 9.3(a) represents a T section ladder network, whereas Fig.9.3 (b) represents the it
section ladder network. It can be observed that both networks are identical except at the ends.
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Z1 Z1 Z.' 21
L CTH L1 -
] Zz 22 22 22
(a)
1 Z4 Z4 Z4
-k 3 PO L
552 42 Z2 Z, o,
(b)
Fig. 9.3

9.3 EQUATIONS OF FILTER NETWORKS

The study of the behavior of any filter requires the calculation of its propagation constant V,
attenuation a, phase shift § and its characteristic impedance Z o .

T-Network

Consider a symmetrical T-network as shown in Fig. 9.4.

_%L Z4
! e AVAVAT A /\2/\ ,‘.2
z2 Zo
{ b ‘2',

Fig.9.4

If the image impedances at port 1-1' and port 2-2' are equal to each other ,the image
impedance is then called the characteristic, or the iterative impedance, Z ¢ .Thus, if the network
in Fig.9.4 is terminated in Z o, its input impedance will also be Z ¢ . The value of input impedance

for the T-network when it is terminated in Z ¢ is given by
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o
s 22[2' +/‘"J

Zl = 3
2 +2Z; + 2,

also Zin T Z()

L
24( 2I & Z"]

7

Zy ==L 4 =

z, =4 (&2, +22,2,)
2 Z, + 222 + 22,

 Z}422,Z,+22,Zy+2Z,Z, +4ZyZ,

Zy
2(Z; +22Z5 +22Z,)
4Z5 =7 + 42,2,
ZZ
25 = —4‘— + 2,2,

(9.1)
Zot can also be expressed in terms of open circuit impedance Zoc and short circuit impedance

Z sc of the T — network . From Fig. 9.4, the open circuit impedance Z oc =Z1/2 + Z 2 and

o A,

Z
ZO XZv‘.C —= ZIZZ =t T

c

ZO c Zsc

(9.2)

Propagation Constant of T- Network

By definitation the propagation constant Y of the network in Fig.9.5 is given by Y = log e 11/12
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Writing the mesh equation for the 2nd mesh, we get

Z1_ Z4
2 2
1 AVAVAV, NN Nty 2D

1’ 27
Fig.9.5
Z
Z
7 L +2Z,+ 2,
L 2 = aY

12 ZZ

Zl

"’2—+Zz +ZO :ZZey

i 4 Z,
Zy =2,(e —1)—7

The characteristic impedance of a T — network is given by

22

Squaring Esg. 9.3 and 9.4 and subtracting Eq.9.4 from Eq.9.3, we get

(9.3)

(9.4)
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Zf Zi

Z2 (e V=) +—4‘——Z,zz(e"" ~1)=SZ7. 7, =0

Zi(e" -1 -Z,Z,(14+e"—D=0
Z3(e—1)*—2Z,e" =0
Z,(e"—1)*—2Ze"=0

(¥ — 1)2 D Ze

Z,

P2 e 1 )
Zye

Rearranging the above equation, we have

L o SN 9 s B
ZZ

P B, SO T

ZZ

Dividing both sides by 2, we have

e’ +e Zy
2 2Z,
coshy =1+ £
27,

(9.5)

Still another expression may obtained for the complex propagation constant in terms of the
hyperbolic tangent rather than hyperbolic cosine.
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sinh y = \/cos hy —1
2 2
27, Z, 2Z,
Z,

’ 2
sinh'y:~Zl— Z, +Z—':_Z.QL
2

7

(9.6)

Dividing Eq.9.6 by Eq.9.5, We get

ZOT
tanh vy = =
Z, +
¥ 2
Z
P
But Zz + P — ZOC
2
Also from Eq. 9.2,
ZO7' - VZ()CZS(-
h s AT
tanh y = Zo.
Also sinh ;y2— == \jg(cosh'y —1)
Where coshy =1+ (Z,/2Z,)
Z
a4z,

m — Network

(9.7)

Consider asymmetrical it — section shown in Fig. 9.6. When the network is terminated in Z ¢ at port

2-2 "its input impedance is given by

Z4 2D
o be AN -
/4 / />
2Z- 27
1o >’
Fig.9.6

145




CNT, Semester 3", Diploma Engineering (Electrical & Electronics)

222_20_‘

e ‘Z‘ RECY A
Zin o i
7 2o
Z, =20 4 2Z
L e =

By definition of characteristic
impedance, Z;,, = Zy

2Z3 Zo
2Z., +2Zg

522 2o
o i
i 227, 2

> [z, +

Zoz

22200 el 22,(2Z,Z, + ZoZy +22Z4Z,)
e 2Z, 2o b, 22 +2Zp)

2Z,2,2, + Z,ZE + 2232, +4Z5Zy + Donlo
— 42,72 +2ZZ,Z, +4ZyZ;
, 228 ¥4Z,23 = 4Z,Z;
Z2(Z, +4Z,)=4Z,Z;
S_ %2
0 Z +4Z

Rearranging the above equation leads to

Zo = ZIZZ
0T N14-Z, /82,

(9.8)

which is the characteristic impedance of a symmetrical mr-network,

2,2,

ZO1r < s >
From Eq. 9.1
Zz2
Zop = \/Tl +Z,Z,
z L&z
Zor
(9.9)
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Z on can be expressed in terms of the open circuit impedance Z oc and short circuit
impedance Z sc of the m network shown in Fig.9.6 exclusive of the load Z ¢ .

From Fig.9.6, the input impedance at port 1- 1 when port 2 — 2 is open is given by

,  _22)(Z +22))
Py

Similarly, the input impedance at port 1 — 1 when port 2 — 2'is short circuit is given by
2723
s

47,75 Z,Z
Hence Z, xZ, =—>12_—= 12
€ N UBeN A7, Ve S ZTNAZ,

Thus from Eq. 9.8

Z()-rr == AO(' Zsc

(9.10)
Propagation Constant of m — Network

The propagation constant of a symmetrical t — section is the same as that for a symmetrical T
— Section.

1.e. cosh y = 14—
1 2Z,

9.4 CLASSIFICATION OF PASS BAND
AND STOP BAND

It is possible to verify the characteristics of filters from the propagation constant of the network. The
propagation constant Y, being a function of frequency, the pass band, stop band and the cut-off
point, i.e. the point of separation between the two bands, can be identified. For symmetrical T or it
— section, the expression for propagation constant Y in terms of the hyperbolic functions is given by

Egs 9.5 and 9.7 in section 9.3. From Eq.9.7, sin h ¥/2 =V(Z 1 /4Z2) .

If Z1 and Z2 are both pure imaginary values, their ratio, and hence Z1 /4Z2 , will be a pure real

number. Since Z1 and Z2 may be anywhere in the range from -jo to +jo , Z1 / 4Z2 may also have any
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real value between the infinite limits . Then sin h Y/2 =VZ 1 /v4Z3 will also have infinite limits,
but may be either real or imaginary depending upon whether Z1 / 47 is positive or negative.

We know that the propagation constant is a complex function Y = a+jB, the real part of the
complex propagation constant a, is a measure of the change in magnitude of the current or voltage
in the network ,known as the attenuation constant . B is a measure of the difference in phase
between the input and output currents or voltages. Known as phase shift constant Therefore a and

B take on different values depending upon the of Z1/ 427 . From Eq.9.7, We have

a. JB B B

sinh Y = sinh[— + -—J — sinh > cos > + jcosh Zsint
2 2 2 ok 2, @

(9.11)
Case A
If Z1 and Z7 are the same type of reactances, then [Z1 / 4Z2 ] is real and equal to say o+x .

The imaginary part of the Eq. 9.11 must be zero.

cosh —;—sin E =10)

(9.12)
sinh o cOSs E b
2 2
(9.13)

a and B must satisfy both the above equations.

Equation 9.12 can be satisfied if /2 =0 or ni, wheren=0, 1, 2,....., then cos B/2 = 1 and sinh a/2=x
=V(Z21/472)

That x should be always positive implies that

Zl
i,

(9.14)

0 and o = 2sinh”"
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Since a 20, it indicates that the attenuation exists.
Case B

Consider the case of Z1 and Z; being opposite type of reactances, i.e. Z1 / 422 is negative ,
making V Z1 / 4Z; imaginary and equal to say Jx

*The real part of the Eq.9.11 must be zero.

sinh ol coSs E seal)
2 2

(9.15)

cosh = sin E =X
2
(9.16)

Both the equations must be satisfied simultaneously by a and . Equation 9.15 may be
satisfied when a = 0, or when B = it. These conditions are considered separately hereunder

(i) When a = 0; from Eq. 9.15, sinh a/2 =0.and from Eq.9.16 sin /2 = x =V(Z1/ 4Z2) . But the sine
can have a maximum value of 1. Therefore, the above solution is valid only for negative Z1 / 42>
, and having maximum value of unity. It indicates the condition of pass band with zero
attenuation and follows the condition as

Zl
— 1< — = O
=2

=

B=2sin ! [=1_
4z,

(9.17)

(i) When B =m, from Eq.9.15, cos B/2 = 0. And from Eq.9.16, sin B/2 =+ 1; cosh a/2 = x =V (Z1 / 4Z2)

Since cosh a/2 2 1, this solution is valid for negative Z1 / 4Z2 ,and having
magnitude greater than, or equal to unity. It indicates the condition of stop band since a # 0.

Gl
4z,

(9.18)

It can be observed that there are three limits for case A and B. Knowing the values of

Z1 and 73, it is possible to determine the case to be applied to the filter. Z1 and Z2 are made of
different types of reactances, or combinations of reactances, so that, as the frequency changes, a
filter may pass from one case to another. Case A and (ii) in case B are attenuation bands, whereas (i)
in case B is the transmission band.
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The frequency which separates the attenuation band from pass band or vice versa is
called cut-off frequency. The cut-off frequency is denoted by fc, and is also termed as nominal
frequency. Since Zg is real in the pass band and imaginary in an attenuation band, fc is the
frequency at which Zg changes from being real to being imaginary. These frequencies occur at

LLIE Oor 7O
4z, ' 9.18(a)
Z
a7z =—lorZ, +42Z, =
2 9.18 (b)
The above conditions can be represented graphically, as in Fig.9.7.
fa (nepers) 4
Stop Pass Sto
Band Band Ban% A
H i . T
/ E 3
-2 —1 21 __l1 Z4
422 422

Fig. 9.7

9.5 CHARACTERISTIC IMPEDANCE IN
THE PASS AND STOP BANDS

Referring to the characteristic impedance of a symmetrical T-network, from Eq. 9.1 We have

ZOT =

4

Z
4z,

\

If Z1 and Z3 are purely reactive, let Z1 = jx1 and Z2 = jx2, then
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X
4x,

.

Zor = 70Xy |1+

(9.19)

A pass band exists when x1 and x2 are of opposite reactances and

X

— <0
4x,

—=1<

Substituting these conditions in Eq. 9.19, we find that ZoT is positive and real. Now consider
the stop band. A stop band exists when x1 and x2 are of the same type of reactances; then x1/4x2 >
0. Substituting these conditions in Eq. 9.19, we find that Zor is purley imaginary in this attenuation
region. Another stop band exists when x1 and x 2 are of the same type of reactances, but with x1/4x2
< -1.Then from Eq.9.19, ZoT is again purly imaginary in the attenuation region.

Thus, in a pass band if a network is terminated in a pure resistance Ro(ZoT1 = Ro), the input
impedance is Ro and the network transmits the power received from the source to the Ro
without any attenuation. In a stop band Zor is reactive. Therefore, if the network is terminated in
a pure reactance ( Zo = pure reactance), the input impedance is reactive, and cannot receive or

transmit power. However, the network transmits voltage and current with 90° phase difference
and with attenuation. It has already been shown that the characteristics impedance of a symmet

rical rt- section can be expressed in terms of T. Thus, from Eq.9.9,Zor = Z1Z2/Z0T .

Since Z1 and Z3 are purely reactive, Zon is real, if Zot is real and Zox is imaginary if Zot
is imaginary. Thus the conditions developed for T — section are valid for i — sections.

9.6 CONSTANT -K LOW PASS FILTER

A network, either T or m, is said to be of the constant — k type if Z1 and Z of the network satisfy the
relation

717 2= K2
(9.20)

Where Z1 and Z2 are impedances in the T and rt sections as shown in Fig.9.8.Equation 9.20 states

that Z1 and Z2 are inverse if their product is a constant, independent of frequency. K is a real
constant that is the resistance. k is often termed as design impedance or nominal impedance of the
constant k —filter.
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The constant k, T or it type filter is also known as the prototype because other more complex
network can be derived from it. A prototype T and it — section are shown in

Z4 Z
2 548
C——F800 T 0000 —e
L/2 L/2
22 _—Jf C
(a)

Z4
o SILIRS
L
L X
cZ2 eode cl2 T 22,
(b)

Fig.9.8

Fig.9.8 (a) and (b), where Z1 =jw,and Z2 =1/ jwc . Hence Z1Zp =L /C = k2 which

ior k:[z

(2 \cC

is independent of frequency.

(9.21)

Since the product Z1 and Zz is constant, the filter is a constant — k type. From Eq.9.18 (a) the

cut-off frequencies are Z1 /422 =0,

RS- 30
i.e. w LC —0
4
1.e. f =0 and %' = —1]
4z,
= A 2 oy I
- =
o o 1
il =
N LC
(9.22)

The pass band can be determined graphically. The reactances of Z1 and 4Z, will vary with
frequency as drawn in Fig.9.9.The cut-off frequency at the intersection of the curves Z1 and -4z; is
indicated as fc . On the X — axis as Z1 = -4Z at cut-off frequency, the pass band lies between the

frequencies at which Z1 =0, and Z1 = - 472> .
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Attenuation

Reactance Band

|
|
I
l
I
I
|
I

Fig.9.9

All the frequencies above fc lie in a stop or attenuation band , thus, the network is called a

low- pass filter . We also have from Eq.9.7 that

oy Z, ,—szC JaJLC
sinh—= |——= -
2 \4z, 4 2

From EqQ.9.22
1
VJLC = —
Joar
Lol Yre 24 . S
h — T — _
ols iy 1 el y s At

We also know that in the pass band

2
1L g
S <_[%]2 <0
or %<1 ;
and B = 2sin"' [Z]a =

In the attenuation band,

&y R ouq he fieius
e < 1,1.e.f‘ < i/f-c> !

2 C
oele | e o e o ) j ;B =nr

o = 2cosh™!

The plots of a and B for pass and stop bands are shown in Fig.9.10
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Thus, from Fig. 9.10, =0, =2 sinh™t (f/fc)forf<fc

o = 2cosh™® (f/fc);B=mforf>fc

- ; /

—_—

fc

o
0 —
-
-
0
N
SO S
6)}

Fig .9.10

The characteristics impedance can be calculated as follows

“Zy
Zop. = V1220 sk 2z,
. g[, -4 szc_]
o 4

f 2
Z = k_|1—
or [.f;.]

(9.23)

From Eq.9.23, Zot is rael when f< fc , i.e.in the pass band at f = fc, ZoT1; and for f> fc , ZoT is
imaginary in the attenuation band , rising to infinite reactance at infinite frequency . The variation

of Zot with frequency is shown in Fig.9.11

I
i |
r , s
K ==
| —
-
Zor Zor | y 7
T T Zor | £
/
Passband I / Attenuation
/
. |
0.5 ! L
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Fig.9.11
Similarly, the characteristics impedance of a m — network is given by

_ZiZ; _
e ZOT

Zo

(9.24)

The variation of Zor with frequency is shown in Fig.9.11 . For f<fc, Zor is real ; at f = fc , ZoT is

infinite , and for f > fc, Zor is imaginary . A low pass filter can be designed from the specifications
of cut-off frequency and load resistance.

At cut-off frequency, Z1 =- 422
—4

Jw C

mw2f2LC = 1

Jo L =

Also we know that k = /L /C is called the design impedance or the load resistance

P

C
w22 K2C?2 = 1

1 : . .
Ce= 7 gives the value of the shunt capacitance
fk

¢

Baa 2 U . " { T
and L=k°C= —7~ gives the value of the series inductance.
0

Example 9.1.

Design a low pass filter (both m and T — sections ) having a cut-off frequency of 2 kHz
to operate with a terminated load resistance of 500 Q.

solution. It is given that k = V(L /C) =500 Q, and fc = 2000 Hz
we know that L = k/mfc =500/3.14 x 2000 = 79.6 mH

C = 1/nfck = 1/3.14.2000.500 = 0.318 uF
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The T and mt — sections of this filter are shown in Fig.9.12 (a) and (b) respectively.

L/2 = 39.8 mH L/2 = 39.8 mH L =796 mH
———ZB 0> DB OO0 “BOO0 ™
= L =
>3 >3
sos- C = 0.3189p.f — g = g
1" "
S £
L&) (&3
(@) (b)
Fig.9.12
Constant K — high pass filter can be obtained by changing the positions of series and shunt arms of
the networks shown in Fig.9.8.The prototype high pass filters are shown in Fig.9.13,where Z1 = -j/w
cand Z2 = jwlL.
2:6 2C C
] I 1l
Z4 Z1 Z1
2 2
L 22 2L 3 24 2L Q 22
@) (b)

Fig.9.13

Again, it can be observed that the product of Z1 and Z3 is independent of frequency, and
the filter design obtained will be of the constant k type .Thus, Z1Z> are given by

— 9] I b
22, =——jol=—=k
Kg wC'I C
ke ot
i

The cut-off frequencies are given by Z1 =0 and Z3 =-4Z3 .

Z1 =0 indicates j/wC=0,0orw - a
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From Z1 = - 42,
“j/wC=-4jwl
w2LC = 1/4
o1 /( = |
imLC
(9.25)

The reactances of Z1 and Z3 are sketched as functions of frequency as shown in Fig.9.14.

Zy

Reactance —
N

4275
-— Passband —

Fig.9.14

As seen from Fig.9.14, the filter transmits all frequencies between f = fc and f = a. The point fc

from the graph is a point at which Z1=- 42> .

From Eq.9.7,

sinhl: — = |—
422 4(.02LC

From Eq. 9.25,
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1
fco =
a4 JLC
Pioe nisd o
4t/

& (s dibin 28 .
G YL [Z4m () =9 _/_
4o’ /

In the pass band, -1< Z1/4Z2 < 0, o = 0 or the region in which fc / f< 1 is a pass band B = 2 sin J (fe/

f)
In the attenuation band Z1/4Z< -l,i.efc/f>1

o =2 cosh™ 21/ 473]

=2cosMfc/f);B=-n

Fig.9.15

The plots of a and B for pass and stop bands of a high pass filter network are shown in Fig.9.15.

A high pass filter may be designed similar to the low pass filter by choosing a resistive load r

equal to the constant k, such that R=k =VL/C
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1
T TR
4L/ C
k 1
Je = 4wl  4AnCk
Since = {*_,
k
L= s and C = : _
4mf. dmif .k

The characteristic impedance can be calculated using the relation

Z
Zor = lez[l+ l]:\/i[l__zl—]
4z, 62 4w LC
N
Zor = k 1—[f—‘:]
iJ

Similarly, the characteristic impedance of a m — network is given by

ZoTt
Zy ZO'n B35
T IS e e O e e o kil S
Zor %
0 f =
(9.26)
Fig.9.16

The plot of characteristic impedances with respect to frequency is shown in Fig.9.16.

Example 9.2.
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Design a high pass filter having a cut-off frequency of 1 kHz with a load resistance
of 600 Q.

Solution. Itis given that R | = K=600 Q and fc =1000 Hz
L=K/4nfc =600 /4 x tx 1000 = 47.74 mH

C = 1/4nkfc = 1/4m x 600 x1000 = 0.133 pF

The T and it — sections of the filter are shown in Fig.9.17.

2C = 0.266 nF 2C = 0.266 pnF C =0.133 uF
Srren]l} | ———o o I} =
;-
L =47.74 mH 2L ® 2. 95.48 mH
o
D
(a) (b)
Fig.9.17

9.8 m - DERIVED T - SECTION FILTER

It is clear from Figs.9.10 and 9.15 that the attenuation is not sharp in the stop band for k-type

filters. The characteristic impedance, Zg is a function of frequency and varies widely in the
transmission band. Attenuation can be increased in the stop band by using ladder section, i.e.by
connecting two or more identical sections. In order to join the filter sections, it would be necessary
that their characteristic impedances be equal to each other at all frequencies. If their characteristic
impedances match at all frequencies, they would also have the same pass band . However,
cascading is not a proper solution from a practical point of view .

This is because practical elements have a certain resistance, which gives rise to
attenuation in the pass band also. Therefore, any attempt to increase attenuation in stop band by
cascading also results in an increase of ‘a’ in the pass band .If the constant k section is regarded as
the prototype, it is possible to design a filter to have rapid attenuation in the stop band, and the
same characteristic impedance as the prototype at all frequencies . Such a filter is called m — derived
filter. Suppose a prototype T — network shown in Fig.9.18(a) has the series arm modified as shown in
Fig.9.18 (b) , where m is a constant . Equating the characteristic impedance of the networks in
Fig.9.18, we have
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211{2 211"2 m21;"2 mZ1!'2
25 ‘ \ | \ Z5
(@) (b)
Fig.9.18
ZoT=ZoT’

Where Zort ,is the characteristic impedance of the modified (m — derived) T — network.

2 2,2
\’T'-i—Z,ZZ = \/m4 L +m2z,Z,

ZZ 222
4

2

Z
leZZ' —j—(l - mz)+ Z,Z,

VA A
j ==L (—m?)+-2%
4m m

(9.27)

It appears that the shunt arm Z 12 consists of two impedances in series as shown in Fig.9.19.

=472 m=4/2
s o, T I oo 2 55k
=Z>lrr

Z4( 1 —mm>)
Arr?

Fig.9.19
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From Eq.9.27,1 - m2/4m should be positive to realize the impedance Z Iz physically,
i.e.0<m<1 . Thus m — derived section can be obtained from the prototype by modifying its series
and shunt arms .The same technique can be applied to m section network. Suppose a prototype m —
network shown in Fig. 9.20 (a) has the shunt arm modified as shown in Fig. 9.20(b).

Z1 Z I1
0 [—II — Dol o9 —
2, 22y 22,/ 22,
(a) (b)
Fig.9.20
Zon=17Z lOn

Where Z 'oT[ is the characteristic impedance of the modified (m — derived) t — network.

m
/

[l
4-Zy1m
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Squaring and cross multiplying the above equation results as under.

! /
(42,7, + IIZZI'ZI ) = 4Z,Z, + Z,Z,

m
VA 47
Z| 2 +—2—-—mz |=422Z,
m m i
or Ziasy ZIZZ
Sy 2N
4m m 4
" Z\Z,
7 >
2 4= (1— mZ)
m 4m
2 =
2.7, 4dm ; iz, 712 417:
27 = es=m* )>\ 7 (1—m~)
e * i Z,4
Z,4m g o ook 2 n;
m(l —m?) (1—m~)
(9.28)

It appears that the series arm of the m — derived nt section is a parallel combination of mZ1 and
AmZy [1- m? . The derived m section is shown in Fig.9.21.

m — Derived Low Pass Filter

In Fig.9.22 , both m — derived low pass T and n filter sections are shown. For the T —section shown in
Fig.9.22(a) , the shunt arm is to be chosen so that it is resonant at some frequency fq above cut-off
frequency fc.

If the shunt arm is series resonant ,its impedance will be minimum or zero .Therefore , the
output is zero and will correspond to infinite attenuation at this particular frequency . Thus, at fq

1/mw/C=1- m2/4m wr L, where wr is the resonant frequency
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mZ4
L g1
2Z75/m 4am__ 2Z>/m
5 &2
1—m
L L ]
Fig.9.21
1-m?
a4m &
milL/2 mlL/2 —
: mc
1 2 mc/2 J— L2 == mc/2
4m
(a) (b)
Fig.9.22
k- .
(A—m?)LC
1
I# = fx

K N LCH —nP)

Since the cut-off frequency for the low pass filter is fc = 1/mvVLC

fom e
(9.29)

or
(9.30)
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If a sharp cut-off is desired,fo should be near to fc . From Eq.9.29,it is clear that for the
smaller the value of m,fq comes close to fc .Equation 9.30 shows that if fc and fq are specified , the
necessary value of m may then be calculated. Similarly, for m — derived mt section, the inductance
and capacitance in the series arm constitute a resonant circuit . Thus, at fo a frequency
corresponds to infinite attenuation, i.e. at fa

mw, L — l
[1~ ”m ]w,.C'
A
@R =i Lo ¢
LC—m~)
. 1
S -
wJLCQ —m?)
: . 1
Since, S =
N ILC

(9.31)

Thus for both m — derived low pass networks for a positive value of m(0<m < 1), fa > fc .

Equations 9.30 or 9.31 can be used to choose the value of m, knowing fc and fr . After the value of m
is evaluated, the elements of the T or m — networks can be found from Fig.9.22. The variation of

attenuation for a low pass m — derived section can be verified from a = 2 cosht VZ1/427 for fe< f<
fa . For Z1 = jwL and Z2 = -j/wC for the prototype.

m-

1 Je
a=2cosh™’ —==—

m-.
and B=2sin"! [|=L| = 2sin"! Je
47

! Ty
l[// ] (1—m)?

JcC

Figure 9.23 shows the variation of a, B and Zp with respect to frequency for an m — derived
low pass filter.
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lofa = £,

Fig.9.23

Example 9.3

Design a m — derived low pass filter having cut-off frequency of 1kHz,
design impedance of 400 Q, and the resonant frequency 1100 Hz.

Solution. k=400 Q, fc =1000 Hz ; fo =1100 Hz

From Eq.9.30

1000
l~ — 0.416
f, \/ 1100

Let us design the values of L and C for a low pass, K — type filter (prototype filter).

Thus,
k 400
L= — = 12732
/. <1000 AL
Codh Som e : 0.795 wF
wkf., ar<400x<1000 £~

The elements of m — derived low pass sections can be obtained with reference to Fig.9.22.

Thus the T-section elements are
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mL  0.416x127.32x10°3

ik 5 = 26.48 mH

mC = 0.416 X 0.795 X 106 = 0.33 pF

L e 1 —(0.416)°
am =~ 4-0.416

%127.32x%107> = 63.27 mH

The ar-section elements are

mC  0.416%0.795x10"°
s 2

— 0.165 pF

1 —m? 1—(0.416)°
W =
4dm 4x0.416

% 0.795%10 % = 0.395 uF

mL = 0.416 X 127.32 X 103 = 52.965 mH

The m —derived LP filter sections are shown in Fig.9.24.

52.965 mH
26.48 mH 26.48 mH =i O 00 =
W oy ud-
=
o s 0395uF | &
g0 T
63.27 mH P S
(a) (b)

Fig.9.24
m — Derived High Pass Filter
In Fig.9.25 both m — derived high pass T and it — section are shown.

If the shunt arm in T — section is series resonant, it offers minimum or zero
impedance.Therefore, the output is zero and, thus, at resonance frequency or the
frequency corresponds to infinite attenuation.
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L 1
) Pt
4m
m ®, — 5 C
1—m
4m_ L
1—m?
2CIm 2C/Im
—} H P s
L/im c/m
2L/m
a4m c 2L/m
= T 1-m? - i -
(a) (b)
Fig.9.25
(1)2 - (1.)2 e 1 o 1 — m2
% e L 4m 41.C
= — cC
ml-—m

o V1 —m? i V1 —m?

W, = ——F—0r~ /:\ e |
NG 4~ LC

From Eq. 9.25, the cut — off frequency fc of a high pass prototype filter is given by

fo=foN1=m?

(9.32)

m=_|1—|—==

(9.33)
Similarly,for the m — derived it — section , the resonant circuit is constituted by the series

arm inductance and capacitance . Thus, at fa
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_ﬁl"_z_ w, L = —0)—]——
1—m r
71
- 2
puy 20 0 wi - 1 777
: 41.C
,/1_”,2 B o V1 — 2
w\ — —— J o e —
w20 i 54 i Qv L C
(TS | o
f | |
o | |
Attenluation_> |Pass band™ ...
Band |
|
I
I
0 | |
—ffo( fc _’“'
(a)
Fig.9.26

Thus the frequency corresponding to infinite attenuation is the same for both sections.
Equation 9.33 may be used to determine m for a given fq and fc . The elements of the m —
derived high pass T or it — sections can be found from Fig.9.25. The variation of a, § and Zo

with frequency is shown in Fig. 9.26.

B
ol %~ fe e 7
|
|
—7T : Pass band—__
Attenuation

Band
(b)

Fig.9.26
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Example 9.4.

impedance of

Design a m-derived high pass filter with a cut-off frequency of 10kHz; design
5Qand m=0.4.

Solution .For the prototype high pass filter,

L =

B £20 — 3.978 mH
4nf. 4xwx10000 - '°oMm
1 |

~ 0.0159 wF

Amkf, 47 =500 x10000

The elements of m-derived high pass sections can be obtained with reference to
Fig.9.25.Thus, the T-section elements are

2C _ 2x0.0159%10"°

ot o — 0.0795 wF
L~ 397810 7 Tt
m 0.4 SR $
A4 4<0.4
——C=—"—""_30.0159%10"°% — 0.
P 1— (0.4)2 0302 uF

The ar-section elements are

2L _ 2x0.0159x1073

e i = 19.89 mH
4m 4<0.4
———F XL =———__ %3 978x%<10 3 = 7.
i — 902 — (0.4)2 =< 7.577 mH

C  0.0159

—_—= x<10~% = 0.
o o4 0.0397 wF

T and 1t sections of the m —derived high pass filter are shown in Fig.9.27.

7.5777 mH
0.0795 pF 0.0795 uF FE- 800071
Srreiin | = 1 f e ———
a5 5 7
9.945 mH = 0.0397 pF IS
D oD
Q <
D D
0.0302 uF - =2
¥ 7 Y 01
(a) (b)
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Fig.9.27

9.9 BAND PASS FILTER

As already explained in Section 9.1, a band pass filter is one which attenuates all frequencies below
a lower cut-off frequency f1 and above an upper cut-off frequency f2 . Frequencies lying between f1

and f2 comprise the pass band ,and are transmitted with zero attenuation .A band pass filter may be
obtained by using a low pass filter followed by a high pass filter in which the cut-off frequency of
the LP filter is above the cut-off frequency of the HP filter, the overlap thus allowing only a band of
frequencies to pass . This is not economical in practice; it is more economical to combine the low
and high pass functions into a single filter section .

Consider the circuit in Fig.9.28, each arm has a resonant circuit with same resonant
frequency, i.e. the resonant frequency of the series arm and the resonant frequency of the shunt
arm are made equal to obtain the band pass characteristic.

Ly Ly
2 2C4 2C4 w2 C1

W 1 T il
B G2 A 1

L,

4 iR T 2Ly Col2 4

L
T

2L,

(a) (b)

Fig.9.28

For this condition of equal resonant frequencies.

For this condition of equal resonant frequencies.

L l :
w, — = ———— for the series arm
2 2w,G
from which, ?,L,C, =1

(9.34)
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l

and — =L, for the shiunt aiii
0yC;
fromwhich,  0;L,C; =1
(9.35)
WG =T=w5 1l C,

L,C, = L,C,
(9.36)

The impedance of the series arm, Z, is given by

. 2
] . [io2 Ly —1
7 - [._,wz ___-_/_}:__,[L]
wC) wC

The impedance of the shunt arm, Z, is given by

. 1
JoOLy ——— ;
7,y JoC, SE Jwl,
2
Tips gradlived desailyay
JwCy
i e »C, | 2T C

=L, [ w’L,C —1
Ci |1—w?L;C,

From Eq.9.36

by LGy

ZZ5 :%2“:_‘(1;1 = k2
1 2

Where k is constant. Thus, the filter is a constant k — type .Therefore, for a constant k — type in the
pass band.

< < 0, and at cut-off frequency

—1<

Zy =% J2k
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i.e. the value of Z1 at lower cut-off frequency is equal to the negative of the value of Z1 at the

upper cut-off frequency .

1 : 1 :
[—, + jo, L, ] s = ““[.—‘ o ijLl]
Jw,C

Jw,C,
1 1
L, — = — > L
ol [w, : wlCl] [“’ZCI = l]
A=—02L0) =2L¢2 L6 —1)
Wy
(9.37)

From Eq.9.34, L1C1 = 1 /wo?

Hence Eq.9.37 may be written as

2 2
Gy W; | W5 |
S e
e - 2 2
(0 —w))w; = o (w; —wj)

(9.38)
| | |
% | | |
s | Pass band | | 4
O | |
«©
¥ I
o l l ~4Z
l | |
! ! i
| (o [ fanis
l l
I l |
| | |
| [ I
| I I
-4z,
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Fig.9.29

Thus, the resonant frequency is the geometric mean of the cut-off frequencies.

The variation of the reactances with respect to frequency is shown in Fig.9.29.

If the filter is terminated in a load resistance R = K, then at the lower cut-off frequency.

1
—_— oy Ly | =—27
Jw,C, AR 2K
: L =2k
———— — w —_—
G, 144

Since LiCy== %
Wq
2
wq
& 1—[ 4] ~ 4wk,
Jo
1 .
— = = 49vkf;C,
it 714

= Ja =0
Y amks S
(9.39)
1
Since LG =—
W
1 awkf, />
I‘I 2 S 2 . X
wyC w(f2 — )
L &
w(/f2 — N)
(9.40)

C." Jo =\NS2)
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To evaluate the values for the shunt arm, consider the equation

L, L,

Z\Z,y :C_': C =i
1 2
AV 1 520 70).

s a1

(9.41)
L 1

and Cy= —;— =—

k* w(fy =k
(9.42)

Equations 9.39 through 9.42 are the design equations of a prototype band pass filter. T he
variation of a, B with respect to frequency is shown in Fig.9.30 .

rnlb—— — 4 — — —

o |
I X ]

| | I

| | T |

| | |

| | ]

! | 9 ;

| | I

| | I

| | I

| | |

iy f;o f2 — f = f1

Fig.9.30

Example 9.5.

Design k — type band pass filter having a design impedance of 500 Q and cut-
off frequencies 1 kHz and 10 kHz.

Solution .
k =500 Q; f1 = 1000 Hz; f = 10000
Hz From Eq.9.40,

k 500 90,09

L = - — = = -——mH =16.68 mH
w(f,—f;) w9000 ™
From EQ.9.39,
BRI £ Ying 9000

g = = (0.143 uF
dmkf,f,  4xmwx500%1000x10000
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From Eq.9.41,

L, = C¢ =357 mH
From Eq.9.42,

C, = % — 0.0707 wF

Each of the two series arms of the constant k, T — section filter is given by

ﬂ = i6—8 = 8.84 mH
2 2

2C, =2 X 0.143 = 0.286 pnF
And the shunt arm elements of the network are given by
C, = 0.0707 wF and L, = 3.57 mH
For the constant-4, 1t section filter the elements of the series arm are
C, =0.143 pF and L, = 16.68 mH
The elements of the shunt arms are

C, 0.0707
2

— 0.035 uF

2L, = 2 X 0.0358 = 0.0716 H

9.10 BAND ELIMINATION FILTER

A band elimination filter is one which passes without attenuation all frequencies less than the
lower cut-off frequency f1, and greater than the upper cut-off frequency f2 . Frequencies lying

between f1 and f2 are attenuated. It is also known as band stop filter. Therefore, a band stop filter
can be realized by connecting a low pass filter in parallel with a high pass section, in which the cut-
off frequency of low pass filter is below that of a high pass filter. The configurations of Tand it
constant k band stop sections are shown in Fig.9.31. The band elimination filter is designed in the
same manner as is the band pass filter.
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L1/2 L1/2 L
— 80 ) 00 ¥ B0 Y
| wg i1 - i
201 L;:_- 2C1 2L2 C1 2L
C Col2 Cold
T 2 T 2 —[— 2
(a) (b)
Fig.9.31

As for the band pass filter, the series and shunt arms are chosen to resonate at the same
frequency w o . Therefore, from Fig.9.31 (a) , for the condition of equal resonant frequencies

L 1 5
01 — for the series arm
2 2wy C,
1
or Wz =
LICI
(9.43)
wol, = ; for the shunt arm
w,C5
1
2 e
xR Lo bR
(9.44)
1i1o8 adl 1o g
1, L,C5
Thus L Gt L
(9.45)
It can be also verified that
s I
Z\Zy =2 =2 —F?
o, (&
(9.46)
h=Vhh
(9.47)

At cut-off frequencies, Z1 = - 423

Multiplying both sides with Z2 , we get
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AV RN 2
k
Zy =k
2 73
(9.48)

If the load is terminated in a load resistance, R = k, then at lower cut-off frequency

4 k
Zzz.l[ —"’llfz]zlg
12
w,C, 2
1-0{CyL, = wlczg
From Eq.9.44,
d 1
wq
2
__(”_12 L k @,C;
Wy 2
2
Jo >
o i
2 > :
ktf, Jo
Since Jo = JNS2
b _1,_;]
kv | f, 2
AT W 1
kar NI
(9.49)
From Eq.9.44,
Z 11
RN T,
praitooko S5 T W/

@03C, @5 —h)

Since Jo = N2

b k
4’"’(.f2 _fi)

L,

(9.50)
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Also from Eq. 9.46,

k% = [;l - £2_
C2 Cl
L, <ki0, = 5[_f2 —A ]
w( N/
(9.51)
L,
and C, =—=
k
(9.52)
1

~amk(f, — ;)

Z4
Pass

Attenuation

Pass

4 fo

Fig.9.32

The variation of reactances with respect to frequency is shown in Fig.9.32. Equation 9.49

through Eq.9.52 is the design equations of a prototype band elimination filter. The variation of a ,

with respect to frequency is shown in Fig.9.33 .
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AR L

iy o o fo L — F
Fig.9.33
Example 9.6.

Design a band elimination filter having a design impedance of 600 Q and cut-off frequencies f1 =
2 kHz and f2 = 6 kHz.

Solution. (f2 - f1) = 4 kHz

Making use of the Eqs.9.49 through 9.52 in Section 9.10, we have

Ll"* f 600 x 4000 63 mH
%2000 6000
G = = 0.033 puF
4'rrk(f2 ~4) T Axmx 600(4000)
Eo i I 600
© o Amk(f,~ f)  4m(4000)
; L =A%l 4000 }:0'”6@
ht 600 x 1 2000 x 6000
Each of the two series arms of the constant &, 7-section filter is given by
i 31.5 mH
2
2C, = 0.066 pF

And the shunt arm elements of the network are
L,=12mH and C, = 0.176 pF

For the constant k, r-section filter the elements of the series arm are 180




