Vedang Institute of Technology
Lesson Plan

Lesson Plan				
Discipline: MECHANICAL ENGG.	Semester: 3 rd			
Subject:	No. of Days/	Semester Starts: 01/08/2023 Semester Ends: 30/11/2023		
Engineering	Week Class	No. of Weeks: 15 Week		
Material	Allotted:04			
Week	Class Day	Topics		
	1 st	ENGINEERING MATERIALS AND THEIR		
	1	PROPERTIES		
$1^{ ext{ST}}$	2 nd	Material classification into ferrous and nonferrous category and alloys		
	3 rd	Properties of Materials: Physical, Chemical and Mechanical		
	4 th	Performance requirements		
	1 st	Material reliability and safety		
	2^{nd}	FERROUS MATERIAL AND ALLOY		
$2^{ m ND}$				
<i>L</i>	3 rd	Characteristics and application of ferrous materials		
	4 th	Classification, composition and application of low carbon steel,		
		medium carbon steel and High carbon steel		
	1 st	Alloy steel: low alloy steel, high alloy steel, tool steel and stainless		
		steel		
$3^{ m RD}$	2^{nd}	Tool steel: Effect of various alloying elements such as Cr, Mn, Ni,		
	_	V, Mo,		
	3 rd	IRO- CARBON SYSTEM		
	4 th	Concept of phase diagram and cooling curves		
	1 st	Concept of phase diagram and cooling curves		
	2^{nd}	Concept of phase diagram and cooling curves		
4 TH	3 rd	Features of Iron-Carbon diagram with salient micro- constituents of Iron and Steel		
	4 th	Features of Iron-Carbon diagram with salient micro- constituents of Iron and Steel		
		Features of Iron-Carbon diagram with salient micro- constituents of		
	1 st	Iron and Steel		
5 TH	2 nd	Features of Iron-Carbon diagram with salient micro- constituents of Iron and Steel		
J		Features of Iron-Carbon diagram with salient micro-		
	3 rd	constituents of Iron and Steel		
	4 th	CRYSTAL IMPERFECTIONS		
		Crustal defines, classification of crystals, ideal crystal and crystal		
	1 st	imperfections		
		classification of imperfection: Point defects, line defects, surface		
6 TH	2 nd	defects and volume defects		
		classification of imperfection: Point defects, line defects, surface		
	3 rd	defects and volume defects		
		Types and causes of point defects: Vacancies, Interstitials and		
	4 th			
		impurities Types and causes of line defects: Edge dislocation and screw		
	1 st	dislocation		
7^{TH}	2 nd	Effect of imperfection on material properties		
/	_			
	3 rd	Deformation by slip and twinning		
	4 th	Effect of deformation on material properties		

	1 st	Effect of deformation on material properties
	2 nd	HEAT TREATMENT
8 TH	3 rd	Purpose of Heat treatment
	4 th	Process of Heat treatment: Annealing, normalizing,
	7	hardening, tampering, stress relieving measures
	1 st	Process of Heat treatment: Annealing, normalizing, hardening, tampering, stress relieving measures
	d	Process of Heat treatment: Annealing, normalizing,
9 TH	2 nd	hardening, tampering, stress relieving measures
	3 rd	Surface Hardening: Carburizing and Nitriding
	4 th	Surface Hardening: Carburizing and Nitriding
	1 st	Effect of heat treatment on properties of steel
TU	2 nd	Hardenability of steel
10^{TH}	3 rd	NON-FERROUS ALLOYS
	4 th	Aluminum alloys: composition, property and usage of Duralumin, y-alloy.
	1 st	Aluminum alloys: composition, property and usage of Duralumin, y-alloy.
	2 nd	Copper alloys: composition, property and usage of Copper-Aluminum, Copper-Tin, Babbit, Phosphorous bronze, brass, Copper-Nickel.
11 TH	3 rd	Copper alloys: composition, property and usage of Copper- Aluminum, Copper-Tin, Babbit, Phosphorous bronze, brass, Copper-Nickel
	4 th	Copper alloys: composition, property and usage of Copper- Aluminum, Copper-Tin, Babbit, Phosphorous bronze, brass, Copper-Nickel
	1 st	Predominating elements of lead alloys, Zinc alloys and Nickel alloys
12 TH	2 nd	Predominating elements of lead alloys, Zinc alloys and Nickel alloys
12	3 rd	Low alloy materials like P-91, P-22 for power plants and other
	4 th	Low alloy materials like P-91, P-22 for power plants and other
	1 st	BEARING MATERIAL
13 TH	2 nd	Classification, composition, properties and uses of copper base, Tin Base, Lead base, Cadmium base bearing materials
13	3 rd	Classification, composition, properties and uses of copper base, Tin Base, Lead base, Cadmium base bearing materials
	4 th	SPRING MATERIALS
	1 st	Classification, composition, properties and uses of Iron- base and Copper Base spring material
14 TH	2 nd	Classification, composition, properties and uses of Iron- base and Copper Base spring material
	3 rd	POLYMERS
	4 th	Properties and application of thermosetting and thermoplastic polymers
	1 st	Properties of elastomers
Text	2 nd	COMPOSITES AND CERAMICS
15 TH	3 rd	Classification, composition, properties and uses of particulate based and fiber reinforced composites
	4 th	Classification and uses of ceramics

Vedang Institute of Technology
Lesson Plan

Lesson Plan			
		Name of the Teaching Faculty:	
		Priyanka Barik	
Discipline:	Semester:		
Mechanical	3rd		
Engineering	Siu		
Subject:	No. of Days/		
Environmental	Per Week	Semester From Date: 01/08/2023 To Date: 30/11/2023	
Studies	Class	No of Weeks: 15	
	Allotted:04		
Week	Class Day	Theory Topics	
	1st	Multidisciplinary nature of environmental studies- Introduction	
1 st	2nd	Definition, Scope and Importance	
1	3rd	Need for public awareness	
	4th	Doubt Clearing	
	1st	Forest Resources – Use & over exploitation, deforestation case	
		studies	
- m.d	2nd	Timber Extraction, mining, dams and their effects of forests and	
2 nd		tribal people	
	3rd	Water resources – use & over utilization of surface & ground water,	
		floods, draught	
	4th	Conflicts over water, dams benefits and problems	
	1st	Food resources- World food problem, changes caused by agriculture	
		and over gazing.	
	2nd	Effects of modern agriculture, fertilizers & pesticide problems,	
3 rd		water logging & salinity	
	3rd	Energy resources- Growing energy need, Renewable &	
		nonrenewable energy source, use of alternate energy sources	
	4th	Case studies, Land resources- land as a resource, land	
		de radiation, man induces landslides,	
	1st	Role of individual in conservation of natural resources,	
	2 1	suitable use of resources for sustainable life styles	
4 th	2nd	Unit-3- Ecosystem: concept of ecosystem, structure of eco system	
	3rd	Function of eco system, Producers, consumers, decomposers	
	4th	Enter flow in ecosystem ,ecological succession	
	1 ~4	Forest approxime definition temps described a	
	1st	Forest ecosystem - definition, types, characteristics	
5 th	2nd	Forest ecosystem- structure & function	
	3rd	Pond ecosystem	
	4th	Stream eco system	
	1st	River ecosystem	
	2nd	Ocean ecosystem	
6 th	3rd	Estuaries ecosystem	
	4th	Unit -4- Biodiversity & its conservation: introduction, definition,	
		genetics, species, and ecosystem diversity	
	1st	Value of biodiversity	
	2nd	Biodiversity at global level	
7^{th}	3rd	Biodiversity at global level	
	4th	Habitat loss, poaching of wild life	
8 th			
0	1st	Doubt clearing	

	2nd	Unit-5- Environmental pollution: introduction, definition
	3rd	Air pollution
	4th	Control of air pollution
	1st	Control of water pollution
9 th	2nd	Soil pollution
9	3rd	Marine pollution
	4th	Noise pollution
	1st	Nuclear pollution
10 th	2nd	Solid waste management- causes, effect
10	3rd	Control measures
	4th	Waste management
	1st	Flood management
11 th	2nd	Earth quake magement
11	3rd	Cyclone management
	4th	Landslides management
	1st	Water conservation, rain water harvesting
	2nd	Water shed management, resettlement and rehabilitation of people;
12 th		its problem and concern
	3rd	Environmental ethics: issue and possible solutions.
	4th	Climate change, global warming
	1st	Nuclear accidents and holocaust,
13 th	2nd	case studies
13	3rd	Air (prevention and control of pollution) Act
	4th	Water (prevention and control of pollution) Act
	1st	Doubt clearing
	2nd	Unit 7- Human population and the Environment: population growth
14 th		and variation among nations (introduction)
	3rd	population growth and variation among nations
	4th	Population explosion, family welfare *roe ram
	1st	Human rights
15 th	2nd	Value education
1.5	3rd	Role of information technology in environment and human health
	4th	Doubt clearing, revision

Teaching Faculty

HOD

Vedang Institute of Technology Lesson Plan Discipline Mechanical Freeing Samaresh Pratap Mohanty Negative Samaresh Pratap Mohanty	
Discipline Mechanical Semester Name of the Teaching Faculty Samarash Proton Mohanty	
Engineering Samaresh Tratap Wohanty	
No. of days/Per Semester from date weeks Class Production Technology Weeks No of Weeks - 15	
Weeks Class Period Theory	
1st Metal Forming Processes Extrusion: Definition & Classification	
1st 2nd Explain direct, indirect extrusion process	S
3rd Impact extrusion process.	
4th Define rolling. Classify it.	
1st Differentiate between cold rolling and hot rolling	g process.
2nd List the different types of rolling mills used in Rolli	ing process.
2nd 3rd Doubt Clear Class	
4th Define welding and classify various welding pro	ocesses.
1st Explain fluxes used in welding.	
2nd Explain Oxy-acetylene welding process.	•
3rd 3rd Explain Oxy-acetylene welding process.	
4th Explain various types of flames used in Oxy-acetylene v	welding process.
1st Explain Arc welding process.	
2nd Explain Arc welding process.	
4th 3rd Specify arc welding electrodes.	
4th Define resistance welding and classify it	•
1st Define resistance welding and classify it	
2nd butt welding, spot welding	
5th 3rd butt welding, spot welding	
4th flash welding, projection welding and seam we	elding.
1st flash welding, projection welding and seam we	elding.
2nd Explain TIG and MIG welding process	
6th State different welding defects with causes and r	emedies.
4th State the common ignition troubles and its ren	nedies
1st Casting Define Casting	
7th 2nd Classify the various Casting processes.	
3rd Explain the procedure of Sand mould casti	
4th Explain different types of molding sands with their compositions.	
1st Explain different types of molding sands with their compositions.	
8th 2nd Classify different pattern and state various pattern a	allowances.
3rd Classify different pattern and state various pattern a	allowances.
4th Classify core.	
Oth 1st Describe construction and working of cupola and cru-	cible furnace.
9th 2nd Describe construction and working of cupola and cru	cible furnace.

_		
	3rd	Explain die casting method.
		Explain centrifugal casting such as true centrifugal casting, centrifuging with
	4th	advantages, limitation and area of application.
	1st	Explain centrifugal casting such as true centrifugal casting, centrifuging with
10th	150	advantages, limitation and area of application.
Tour	2nd	Explain various casting defects with their causes and remedies.
	3rd	Revision & Test
	4th	Powder Metallurgy
		Define powder metallurgy process.
	1st	State advantages of powder metallurgy technology technique
11.1	2nd	Describe the methods of producing components by powder metallurgy technique.
11th	3rd	Describe the methods of producing components by powder metallurgy technique.
-	4th	Explain sintering.
	1st	Economics of powder metallurgy.
-	2nd	Doubt Clear Class
12th		Press Work
1201	3rd	Describe Press Works: blanking, piercing and trimming.
-	4th	Describe Press Works: blanking, piercing and trimming
	1st	List various types of die and punch
10.1	2nd	Explain simple, Compound & Progressive dies
13th	3rd	Explain simple, Compound & Progressive dies
-	4th	Describe the various advantages & disadvantages of above dies
	1st	Describe the various advantages & disadvantages of above dies
14th	2nd	Jigs and fixtures Define jigs and fixtures
	3rd	State advantages of using jigs and fixtures
-	4th	State the principle of locations
	1st	Describe the methods of location with respect to 3-2-1 point location of
-		rectangular jig
15th	2nd	Describe the methods of location with respect to 3-2-1 point location of rectangular jig
	3rd	List various types of jig and fixtures.
	4th	Revision & Test

Faculty Signature HOD

Vedang Institute of Technology Lesson Plan		
Discipline:- Mechanical Engineering	Semester:3 RD	Name of Teaching Faculty- Soumyashree Senapati
Subject: Strength of Materials	No. Of Day/Week Class allotted: 4P/Week	Semester From Date: : 01/08/2023 To Date: 30/11/2023
Week	Class Day	Theory/Practical Topics
	1st	Simple Stress & Strain
1st	2nd	Types of load, stresses & strains (Axial and tangential) Hooke's law,
	3rd	Young's modulus, bulk modulus, modulus of rigidity, Poisson's ratio
	4th	derive the relation between three elastic constants,
	1st	Principle of super position, stresses in composite section,
2nd	2nd	Temperature stress, determine the temperature stress in composite bar(Single core)
ZIIU	3rd	Temperature stress, determine the temperature stress in composite bar(Single core)
	4th	Strain energy and resilience, Stress due to gradually applied
	1st	Suddenly applied and impact load.
	2nd	Simple problems on above
3rd	3rd	Thin cylinder and spherical shell under internal pressure
	4th	Definition of hoop and longitudinal stress, strain,
	1st	Derivation of hoop stress,
4th	2nd	longitudinal stress, hoop strain,
	3rd	longitudinal strain,
	4th	volumetric strain
	1st	Computation of the change in length, diameter, and volume,
5th	2nd	Simple problems on above
	3rd	Two-dimensional stress systems
	4th	Determination of normal stress
	1st	Shear stress and resultant stress on oblique plane
6th	2nd	Shear stress and resultant stress on oblique plane
om	3rd	Location of principal plane and computation of principal stress
	4th	Location of principal plane and computation of principal stress
	1st	Location of principal plane
741-	2nd	computation of principal stress
7th	3rd	Maximum shear stress using Mohr's circle
	4th	Problems
8th	1st	Bending moment & shear force
	2nd	Types of beams and load
	3rd	Concepts of Shear force and bending moment
	4th	Shear Force and Bending moment diagram and its salient features illustration in cantilever beam
	1st	Shear Force and Bending moment diagram and its salient features
9th	150	illustration in cantilever beam

	3rd	simply supported beam and over hanging beam under point load	
	4th	Uniformly distributed load	
	1st	Problems	
	2nd	Problems	
10th	3rd	Theory of simple bending	
	4th	Assumptions in the theory of bending,	
	1st	Bending equation	
	2nd	Bending equation	
11th	3rd	Moment of resistance	
	4th	Section modulus,	
	1st	Section modulus	
124	2nd	neutralaxis	
12th	3rd	Solve simple problems	
	4th	Solve simple problems	
	1st	Combined bending & direct stress	
10.1	2nd	Define column, Axial load, Eccentric load on column,	
13th	3rd	Direct stresses, Bending stresses,	
	4th	Maximum& Minimum stresses.	
	1st	Numerical problems on above, buckling load computation using Euler's formula (no derivation) in Columns with various end conditions	
14th	2nd	Numerical problems on above, buckling load computation using Euler's formula (no derivation) in Columns with various end conditions	
	3rd	Torsion	
	4th	Assumption of pure torsion	
	1st	The torsion equation for solid and hollow circular shaft	
15th	2nd	Comparison between solid and hollow shaft subjected to pure torsion	
	3rd	Comparison between solid and hollow shaft subjected to pure torsion	
	4th	Simple problems	
	•	•	

Faculty Signature HOD

Vedang Institute of Technology Lesson Plan			
<u>Discipline</u> Mechanical Engineering	Semester 3 RD	Name of the Teaching Faculty Soumya Ranjan Nayak	
Subject Thermal Engineering -I	No. of Days/perweek class allotted	Semester From Date 01/08/2023 to 30/11/2023	
	4P/W	No. of Weeks - 15 Week	
Week	Class Period	Theory Topics	
1ST	1st	Thermodynamic concept & Terminology	
	2nd	Thermodynamic Systems (closed, open, isolated)	
	3rd	Thermodynamic properties of a system (pressure, volume, temperature	
	4th	Entropy, enthalpy, Internal energy and units of measurement).	
2ND	1st	Intensive and extensive properties Define thermodynamic processes, path, cycle, state, path function, point function.	
	2nd	Thermodynamic Equilibrium. Quasi-static Process	
	3rd	Thermodynamic Equilibrium. Quasi-static Process	
	4th	Conceptual explanation of energy and its sources	
3RD	1st	Work, heat and comparison between the two. Mechanical Equivalent of Heat.	
	2nd	Work, heat and comparison between the two. Mechanical Equivalent of Heat	
	3rd	Work transfer, Displacement work	
	4th	Work transfer, Displacement work	
4TH	1st	Laws of Thermodynamics	
	2nd	State & explain Zeroth law of thermodynamics.	
	3rd	State & explain First law of thermodynamics. Limitations of First law of thermodynamics	
	4th	State & explain First law of thermodynamics. Limitations of First law of thermodynamics	
5TH	1st	Application of First law of Thermodynamics(steady flow energy equation and its application to turbine and compressor)	
	2nd	Application of First law of Thermodynamics(steady flow energy equation and its application to turbine and compressor)	
	3rd	Second law of thermodynamics (Clausius & Kelvin Planck statements).	

	4th	Second law of thermodynamics (Clausius & Kelvin Planck statements).
6ТН	1st	Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & C.O.P
	2nd	Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & C.O.P
	3rd	solve simple numerical
	4th	solve simple numerical
7TH	1st	Properties Processes of perfect gas
	2nd	Laws of perfect gas, Boyle's law, Charle's law, Avogadro's law,
	3rd	Dalton's law of partial pressure, Guy lussac law
	4th	General gas equation, characteristic gas constant, Universal gas constant.
8TH	1st	Explain specific heat of gas (Cp and Cv) Relation between Cp & Cv.
	2nd	Enthalpy of a gas. Work done during a non- flow process.
	3rd	Application of first law of thermodynamics to various non flow process (Isothermal, Isobaric, Isentropic and polytrophic process)
	4th	Solve simple problems on above.
9TH	1st	Free expansion & throttling process.
	2nd	Internal combustion engine
	3rd	Explain & classify I.C engine.
	4th	Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM.
10TH	1st	Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM.
	2nd	Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine.
	3rd	Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine.
	4th	Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine.
11TH	1st	Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine.
	2nd	Gas Power Cycle
	3rd	Carnot cycle
	4th	Otto cycle.
12TH	1st	Otto cycle
	2nd	Diesel cycle.

	3rd	Diesel cycle.
	4th	Dual cycle.
13TH	1st	Dual cycle.
	2nd	Solve simple numerical
	3rd	Solve simple numerical
	4th	Fuels and Combustion
14TH	1st	Define Fuel. Types of fuel
	2nd	Application of different types of fuel.
	3rd	Application of different types of fuel.
	4th	Heating values of fuel
15TH	1st	Heating values of fuel
	2nd	Quality of I.C engine fuels Octane number, Cetane
		number
	3rd	SOLVE PREVIOUS YEAR QUESTION
	4th	SOLVE PREVIOUS YEAR QUESTION

Faculty Signature HOD