Vedang Institute of Technology, 2nd Shift Khurda

<u>Department of Electrical & Electronics Engineering</u>

Lesson Plan for Even Semester

Course: Diploma in Engineering

Teachers Name: S Sanjay Kumar Patra

Semester: 4th

Subject: Analog Electronics and OP-AMP

Session Duration: 2023-24 Class From: 16/01/2024 to 26/04/2024

Week	Class Day	Topic To Be Covered
1st	1st	Introduction to semiconductor and its Application
	2nd	P-N Junction Diode & Its working
	3rd	V-I characteristic of PN junction Diode.
	4th	DC load line
2nd	1st	Important terms such as Ideal Diode, Knee voltage
	2nd	Junctions break down.(Zener breakdown, Avalanche breakdown)
	3rd	P-N Diode clipping Diode Clamping Circuit.
	4th	Thermistors, Sensors & barretters
3rd	1st	Zener Diode and Tunnel Diode
	2nd	PIN Diode
	3rd	Analysis of half wave, full wave centre tapped and Bridge rectifiers and calculate:
	4th	DC output current and voltage
4th	1st	RMS output current and voltage
	2nd	Rectifier efficiency & Ripper factor
	3rd	Regulation
	4th	Transformer utilization factor
5th	1st	Peak inverse voltage
	2nd	Filters
	3rd	Shunt capacitor filter
	4th	Choke input filter
6th	1st	π filter

		T
	2nd	Principle of Bipolar junction transistor
	3rd	Different modes of operation of transistor
	4th	Current components in a transistor
7th	1st	Transistor as an amplifier
	2nd	Transistor circuit configuration & its characteristics
	3rd	CB ,CE, CC Configuration
	4th	Transistor biasing
8th	1st	Stabilization & Stability factor
	2nd	Different method of Transistors Biasing
	3rd	Base resistor method
	4th	Collector to base bias
9th	1st	Self bias or voltage divider method
	2nd	Practical circuit of transistor amplifier, DC
	2110	load line and DC equivalent circuit
	3rd	AC load line and AC equivalent circuit, Calculation of gain, Phase reversal
	4th	H-parameters of transistors
10th	1st	Simplified H-parameters of transistors
	2nd	Generalised approximate model
	3rd	Multi stage transistor amplifier
	4th	R.C. coupled amplifier and Transformer coupled amplifier
11th	1st	Feed back in amplifier
	2nd	General theory of feed back
	3rd	Negative feedback circuit
	4th	Advantage of negative feed back
12th	1st	Power amplifier and its classification
	2nd	Difference between voltage amplifier and power amplifier
	3rd	Transformer coupled class A power amplifier
	4th	Class A push – pull amplifier
13th	1st	Class B push – pull amplifier
	2nd	Types of oscillators & Essentials of transistor oscillator, Principle of
	3rd	operation of tuned collector, Hartley, colpitt, phase wein-bridge oscillator
	4th	Classification of FET, Advantages of FET over BJT and Principle of operation of BJT
14th	1st	FET parameters
	2nd	DC drain resistance, AC drain resistance, Trans-conductance
15th	1st	Biasing of FET

2nd	General circuit simple of OP-AMP and IC – CA – 741 OP AMP
3rd	Operational amplifier stages
4th	Equivalent circuit of operational amplifier

Vedang Institute of Technology, 2nd Shift Khurda

Department of Electrical & Electronics Engineering

Lesson Plan for Even Semester

Course: Diploma in Engineering Teachers Name: Sumitra Behera

Semester: 4th

Subject: Electrical Machine

Session Duration: 2023-24 Class From: 16/01/2024 to 26/04/2024

Week	Class Day	Topics To Be Covered	
	1st	Discuss properties & uses of different conducting material.	
1 st	2nd	Discuss properties & use of various insulating materials used electrical engineering.	
	3rd	Explain various magnetic materials & their uses.	
	4th	Explain construction of DC Generator	
	1st	Principle. & application of DC Generator	
2 nd	2nd	Principle. & application of DC Generator	
2	3rd	Classify DC generator including voltage equation.	
	4th	Derive EMF equation & simple problems.	
	1st	Derive EMF equation & simple problems.	
3 rd	2nd	Solve Problems.	
3	3rd		
	4th	Define parallel operation of DC generators	
	1st	Explain Principle of working of a DC motor.	
4 th	2nd	Explain Principle of working of a DC motor.	
4	3rd	PROBLEM	
	4th	PROBLEM	
	1st	Explain concept of development of torque & back EMF in DC motor including simple problems.	
5 th	2nd	DC motor simple problems.	
3 -	3rd	DC motor simple problems	
	4th	Derive equation relating to back EMF, Current, Speed and Torque equation	

	1st	Classify DC motors & explain characteristics, application.
	2nd	State & explain three point & four point stator/static of DC motor by solid State converter
6 th	3rd	State & explain three point & four point stator/static of DC motor by solid State converter
	4th	State & explain three point & four point stator/static of DC motor by solid State converter
	1st	Explain Speed of DC motor by field control method.
	2nd	Explain Speed of DC motor by armature control method.
7 th	3rd	State Mathematical representation of phasors, significant of operator "J"
	4th	Discuss Addition, Subtraction, Multiplication and Division of phasor quantities.
	1st	Explain AC series circuits containing resistance, capacitances, Conception of active, reactive and apparent power and Q-factor of series circuits & solve related problems.
8 th	2nd	PROBLEM SOLVING
	3rd	
	4th	Find the relation of AC Parallel circuits containing Resistances, Inductance and Capacitances Q-factor of parallel circuits.
	1st	PROBLEM SOLVING
9 th	2nd	FROBLEM SOLVING
9	3rd	Star andDeltacircuit.
	4th	LineandPhaserelationship
	1st	Powerequationwithnumerical problems
10 th	2nd	State construction & working principle of transformer & define connection of Ideal transformer
10	3rd	
	4th	Derive of EMF equation of transformer, voltage transformation ratio.
	1st	Discuss Flux, Current, EMF components of transformer and
	2nd	their phasor diagram under no load condition.
11 th	3rd	Discuss Phasor representation of transformer flux, current EMF primary and secondary voltages under loaded condition.
	4th	Explain types of losses in Single Phase (1-ø) Transformer.
	1st	PROBLEM SOLVING
	2nd	
12 th	3rd	Explain open circuit & short-circuit test (simple problems) Explain construction feature, types of three-phase induction motor.

	4th	State principle of development of rotating magnetic field in the	
	1st	stator.	
	2nd	Establish relationship between synchronous speed, actual speed	
13 th	3rd	and slip of induction motor.	
	4th	Establish relation between torque, rotor current and power factor.	
	1st	Explain starting of an induction motor by using DOL and Star-	
1 4th	2nd	Delta stator. State industrial use of induction motor.	
14 th	3rd	Explain construction features of shaded pole type of single- phase induction motor.	
	4th	Explain construction features of capacitor type of single-phase	
	1st	induction motor.	
15 th	2nd	Explain principle of operation of capacitor type of single-phase	
13	3rd	induction motor.	
	4th	Explain principle of operation of shaded pole type of single-	
	1st	phase induction motor.	
16 th	2nd	Explain construction & operation of AC series motor.	
10	3rd	explain construction & operation of Ac series motor.	
	4th	Concept of alternator & its application.	
17 th	1st	- Problem Solving	
	2nd	1 toolein Solving	
1 /	3rd	Previous Year Question Paper Solving	
	4th	1 Tevious Teal Question Faper Solving	

Vedang Institute of Technology, 2nd Shift Khurda

Department of Electrical & Electronics Engineering

Lesson Plan for Even Semester

Course: Diploma in Engineering

Teachers Name: Subash Chandra Behera

Semester: 4th

Subject : Electrical Measurement & Instrumentation

Session Duration: 2023-24 Class From: 16/01/2024 to 26/04/2024

Week	Class Day	Topics To Be Covered
1st	1st	Define Accuracy, precision, Errors, Resolutions Sensitivity and tolerance.
	2nd	Classification of measuringinstruments.
	3rd	
	4th	Explain Deflecting, controlling and damping arrangements
2nd	1st	
	2nd	Describe Construction, principle of operation, errors, ranges merits
	3rd	and demerits of
	4th	Moving iron typeinstruments.
3rd	1st	Permanent Magnet Moving coil typeinstruments.
	2nd	Dynamometer typeinstruments
	3rd	Rectifier typeinstruments
	4th	Induction typeinstruments
4th	1st	Extend the range of instruments by use of shunts and Multipliers.
	2nd	SolveNumerical
	3rd	
5th	1st	Describe Construction, principle of working of Dynamometer type
	2nd	wattmeter
	3rd	What are the Errors in Dynamometer type wattmeter and methods of their correction
	4th	Introduction to meters
6th	1st	Single Phase Induction type Energy meters – construction.
	2nd	Single Phase Induction type Energy meters – working principle and

		their compensation and adjustments.
	3rd	Testing of EnergyMeters
	4th	Tachometers, types and workingprinciples
7th	1st	Principle of operation and construction of Mechanical and Electrical
	2nd	resonance Type frequencymeters.
	3rd	Principle of operation and working of Dynamometer type single phase
	4th	and three phase power factormeters.
8th	1st	Synchroscopes – objectives andworking.
	2nd	Phase Sequence Indicators and its working
	3rd	Classification ofresistance
	4th	Explain Measurement of low resistance by voltage drop
9th	1st	and potentiometer method & its use to Measureresistance.
	2nd	Explain Measurement of medium resistance by wheat Stone bridge
	3rd	method and substitutionMethod.
	4th	Explain Measurement of high resistance by loss of chargemethod.
	1st	Explain construction & principle of operations (meggers) insulation
10th	2nd	resistance & Earth resistancemegger.
	3rd	Explain construction and principles of Multimeter.
	4th	Explain measurement of inductance by
	1st	Maxewell's Bridgemethod.
11th	2nd	Owen Bridge method
	3rd	Explain measurement of capacitance by
	4th	De Sauty Bridgemethod
	1st	Schering Bridgemethod
12th	2nd	LCR Bridgemethod
	3rd	DefineTransducer, sensingelementor detector elementand transduction elements.
	4th	Classifitmens dynam Civis avammlas of vanious alass of thoms dynam
	1st	Classifytransducer. Giveexamples of various class of transducer.
13th	2nd	Resistivetransducer
	3rd	Linearandangularmotionpotentiometer.
	4th	ThermistorandResistancethermometers.
	1st	WireResistanceStrainGauges
14th	2nd	InductiveTransducer
	3rd	PrincipleoflinearvariabledifferentialTransformer(LVDT)
	4th	UsesofLVDT.
	1st	CapacitiveTransducer.

15th	2nd	Generalprincipleof capacitivetransducer.
	3rd	Variableareacapacitivetransducer.
	4th	Changeindistancebetweenplate capacitivetransducer.
	1st	PiezoelectricTransducerandHallEffectTransducerwiththeirapplications.

Vedang Institute of Technology, 2nd Shift Khurda

Department of Electrical & Electronics Engineering

Lesson Plan for EvenSemester

Course: Diploma in Engineering

Teachers Name: Smrutirekha Panda

Semester: 4th

Subject: GENERATION TRANSMISSION & DISTRIBUTION

Session Duration:2023-2024 Class From: 16/01/2024 to 26/04/2024

Week	Class Day	Topics To Be Covered
	1 st	
1 st	2 nd	ElementaryideaongenerationofelectricityfromThermal,Hydel,Nuclear,Powerstation.
	3 rd	
	4 th	
	1 st	
and	2 nd	Layout diagramofgenerating stations.
2 nd	3 rd	
	4 th	IntroductiontoSolarPowerPlant(Photovoltaiccells).
	1 st	Draw layout of transmission and distribution scheme.
3 rd	2 nd	Explain voltage Regulation & efficiency of transmission.
3.4	3 rd	State and explain Kelvin's law for economical size of conductor.
	4 th	Explain corona and corona loss on transmission lines.
	1 st	State types of supports, size and spacing of conductor.
4th	2 nd	Types of conductor materials.
4 th	3 rd	State types of insulator and cross arms.
	4 th	Derive for sag in overhead line with support at same level and different
5 th	1 st	level (approximate formula effect of wind, ice and temperature on sag simple problem)
3	2 nd	Calculation of regulation and efficiency
	3 rd	

	4 th	
	1 st	Explain EHV AC transmission.
6 th	2 nd	Explain Reasons for adoption of EHV AC transmission.
	3 rd	Problems involved in EHV transmission.
	4 th	Explain HV DC transmission.
	1 st	Explain HV DC transmission.
	2 nd	State Advantages and Limitations of HVDC transmission system.
7 th	3 rd	Introduction to Distribution System.
	4 th	Explain Connection Schemes of Distribution System – (Radial, Ring Main and Inter connected system)
	1 st	Explain DC distributions (a) Distributor fed at one End (b) Distributor fed at both the ends (c) Ring distributors.
8 th	2 nd	Explain AC distribution system.
	3 rd	Evoluin Mathad of calving AC distribution analytics
	4 th	Explain Method of solving AC distribution problem
	1 st	Explain three phase four wire star connected exists mercan amount
9 th	2 nd	Explain three phase four wire star connected system arrangement
9	3 rd	Explain cable insulation of cables
	4 th	Classification of cables.
	1 st	State Types of L. T. & H.T. cables with constructional features.
a	2 nd	State and Explain Methods of cable lying.
10 th	3 rd	State methods of Localisation of cable faults – Murray and Varley loop test for short circuit fault/Earth fault.
	4 th	State and explain causes of low power factor.
	1 st	Explain methods of improvement of power factor.
11 th	2 nd	Define & explain Load curves.
11	3 rd	Define & explain Demand factor.
	4 th	Define & explain Maximum demand.
	1 st	Define & explain Load factor.
12 th	2 nd	Define & explain Diversity factor.
12	3 rd	Define & explain Plant capacity factor.
	4 th	Define & explain peak load and Base load on power station
	1 st	Explain flat rate rate tariff with problems
13 th	2 nd	Explain two part tariff with problems
13	3 rd	Explain and block rate tariff with problems
	4 th	Draw and explain layout of LT. HT and EHT substation
14 th	2 nd	Draw and Explain Earthing of Substation

14 th	3 rd	Draw and Explain Earthing of Transmission
	4 th	Draw and Explain Earthing of Distribution Lines
	1 st	Duchlana Calvina
15 th	2 nd	Problem Solving
	3 rd	Calva Bussiana Van Overtian Banan
	4 th	Solve Previous Year Question Paper